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Abstract

Covert channels are information leaks in systems that use resources to transfer secretly a message.
They are a threat for security, performance, but also for a system’s profitability. This paper
proposes a new approach to detect covert channels from scenario models of protocols. The problem
of finding covert channels in scenarios is first modeled as a game, in which a pair of malicious
users {S, R} is trying to transfer information while the rest of the protocol tries to prevent it. The
messages transferred are encoded by behavioral choices at some precise moments, and decoded by
a transducer whose input vocabulary is an observation of the system. We then characterize the
presence of a covert channel as the existence of a winning strategy for {S, R} and of a decoder.
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1 Introduction

A covert channel is an information flow that violates a system’s security policy. The term
covert channel has first been introduced by [19]. Covert channels are considered as a threat
for information systems, for several reasons. The first obvious reason is of course a security
issue, as covert channels can be used to pass information secretly. Covert channels can also
be an economical threat. They can be used to transmit information (very often at a low
rate) using an existing system without paying for the service provided. Furthermore, they
are often based on an obfuscated use of resources or functionalities, which heavily impacts
the performances of a system.
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Covert channels are often differentiated in terms of “storage channels” and “timing chan-
nels”. A storage channel is a channel that uses a resource of a system to write information
that can be read by a third party. A timing channel is a channel that modifies a system’s
response time in a way that can be observed by a third party. Information leaks are also
characterized by their bandwidth, ie the number of bits transmitted through a covert chan-
nel per second. In [23], it is considered that no system should allow a rate greater than
100 bits per second, and for applications with high security requirements, this rate should
not exceed 1 bit per second. Several recommendations [9,23] have defined policies to han-
dle covert channels. It is recommended [23] to systematically try to detect covert channel
with formal techniques. When a covert channel is discovered, it is then required to docu-
ment it with scenarios of use, and to compute its bandwidth. It is generally admitted that
closing all covert channels is impossible [22]. Very often closing means suppressing accesses
to all resources used for information passing. It would then resume to avoiding all shared
resources, message acknowledgments in protocols, and even internal clocks in computers! A
more sensible solution is to add noise on a known covert channel (for example by accessing
randomly the resources used) to limit its bandwidth. Another solution is to monitor covert
channels use, hence allowing to take appropriate decisions when illegal information flows are
detected.

A characterization of covert channels has first been proposed as a confinement problem
in information systems. The confinement notion in information systems defines for each user
the services he can access and the users he is allowed to communicate with. Covert channels
can be used to transfer information outside this confinement zone. Security models for this
vision of systems are defined in [4,3], and several approaches to detect indirect information
flows have been proposed: shared resources matrices [18], axiomatic approaches [1]... More
recently, the existence of covert channels has been defined through non-interference properties
[12,10] as follows: there is non-interference between a set of users U and a set of users U ′

if and only if “what U does has no effect on what U ′ can see” [12]. Non-interference is
also questioned [30] as the transfer of a single bit of information causes a non-interference
violation. Several approaches to non-interference have been proposed, through typing [34] (a
system contains an interference if it cannot be correctly typed), or using process algebra [20].
Very often, non-interference approaches classify data and processes of a system according
to two security levels, high and low. High-level processes can access any data in the system
and communicate with all other high processes, while low-level processes are not allowed to
read information from the high level, either directly or indirectly.

Note also that confinement and non-interference both assume that illegal information
flows occur when the communicating parties are not allowed to send information to each
other. However, illegal information flows may exist over legal information transfers. This
kind of covert channel is often called “legitimate channel” [21]. A classical example is water-
marking: it is possible to add covert information to a legal information flow just by altering
some bits. However, the search for covert channels does not usually address the contents of
legal data, which is more a steganography problem. Another possibility is to hide data in
some useless parts of protocol frames to pass covert information in a legal data flow [28].
This kind of covert channel is frequent, but can be easily detected and closed. Another pos-
sibility in protocols is to use the way information is passed from a participant to another
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to encode information. This is not a confinement or non-interference problem, as the infor-
mation flow is allowed between participants. This is not either a steganography problem, as
the message transferred is not altered. Such a situation can be considered as a “protocol-
based” covert channel. In fact, the protocol itself is used as a resource in more classical
covert channels to store data. Detecting such covert channels is far more difficult, as they
involve several messages in the protocol. Of course, protocol-based covert channels detection
addresses the problem of illegal information flow in a less generic way than non-interference,
as it makes an initial assumption on how data is encoded. However, data passing is not
defined as the detection of an altered behavior, as participants to a protocol-based covert
channel all behave normally.

For a more complete bibliography on covert channels, interested readers are referred
to [31]. This paper proposes a scenario framework to detect potential “protocol based”
covert channels. Using scenarios has several advantages: first, scenarios are often the first
information one can obtain about a system’s behavior. They are also used to describe systems
requirements. Detecting covert channels at early stages of a system’s development can help
modifying the systems when modifications can still be done at reasonable cost. A second
reason for the use of scenarios is that several recommendations ask to document covert
channels use with such models. Studying covert channels directly from scenarios provides
immediately examples to document an illegal information flow.

In addition to these considerations, scenarios can be used as a partial knowledge of a
system’s behavior. Indeed, it is often very hard to obtain a model of a system. Scenarios
are good candidates to capture most common behaviors of a system. Then, from this model,
a covert channel analysis can be performed. It may be argued that scenarios model only
a part of a system, and hence may miss some illegal flows. The study we propose in this
paper does not claim to be exhaustive, and it is generally admitted that a gap always exists
between a model and its implementation. This gap may be due to implementation details,
or to simplifications in the model. Consequently, a model-based study can miss some covert
channels, or a contrario exhibit unrealistic scenarios. Our scenario based approach has the
same drawback, and only reveals “potential covert channels”, the existence of which should
be tested on a real implementation of a protocol. However, one should keep in mind that
scenarios are intended to represent in an abstract way executions that will be present in
an implementation (if they are considered as a set of requirements) or that exist in an
implementation (if they represent output traces of an implemented system). For this reason,
we think that a covert channel identified on scenarios has many chances to be usable in an
implementation.

The approach proposed is to start from a scenario description of a system. From this
description, a covert channel is modeled as a game in which a pair of corrupted users {S, R}
try to send information while the rest of the protocol is trying to prevent this information
flow. A covert channel exists if {S, R} has a winning strategy in the game, and if R can
decode the message that is transmitted with a transducer built from the strategy. The main
contribution of the paper is an algorithm that partitions the game’s arena into two subsets of
vertices: one subset Y from which information encoding is possible, and its complementary
X, from which information encoding is not ensured. If Y is not empty, then it is shown that
a winning strategy to encode information of arbitrary size exists from any vertex of Y .
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This approach is close to a definition of non-interference for scenarios, but presents several
advantages. First, covert channels are not characterized as the possibility to send a single bit,
as often in non-interference frameworks, but rather as the possibility to encode and decode
a message of arbitrary size. In addition to this, using strategy with memory allows for the
introduction of some intelligence in attackers’ behaviors. Another interest of our approach
is that it does not need to consider security levels or a distinction between high and low
security levels, which allows to consider legitimate channels.

The paper is structured as follows. Section 2 defines the scenario notation we use in the
paper. Section 3 gives an example of how information can be encoded using a protocol’s
functionalities. Section 4 recalls some basic definitions for game theory that will be used
to characterize covert channels. Section 5 characterizes potential covert channel presence in
scenarios, and gives an algorithm to detect them. Section 6 shows how to build a decoder
for a given covert channel, and section 7 concludes this work.

2 Scenarios basics

Scenario languages have met a great interest this last decade. Several languages have been
proposed recently: Message Sequence Charts [17], Live Sequence Charts [14], UML Sequence
diagrams [24]... All these languages share a common view of behavior representation, namely
basic chronograms that are then composed by means of several operators. Scenarios describe
possible executions as causal dependencies between occurrences of events in a system. Of
course, each language has its own semantics subtleties, but basically, scenarios can be defined
as compositions of partial orders. The idea to compose partial orders to describe systems
behaviors is not new [25]. However, the recognition of scenarios as useful languages is
a recent phenomenon. Before 1992, scenarios were only considered for output traces for
distributed systems. After the definition of the language MSC’96 [17,27,26,29] and of UML
sequence diagrams [24], scenarios have been used to capture requirements. However, as
many graphical languages, scenarios cannot be used to design exhaustively a system. They
are more dedicated to the representation of abstract and incomplete behaviors. An usual
trend is to model typical executions of a system, or a contrario exceptional cases by means
of scenarios, hence covering a large subset of possible behaviors. So, even if incomplete,
scenarios are still relevant to detect properties of a system.

For the rest of the paper, we have considered Message Sequence Charts. However, the
approach proposed by this paper certainly adapts to other scenario formalisms. Message
sequence charts is composed of two kind of diagrams. Basic chronograms (called basic
Message Sequence Charts -or simply bMSC for short) are composed by means of High-level
Message Sequence Charts, roughly speaking bMSC-labeled automata.

Definition 2.1 A bMSC is a tuple M = (E,≤, A, I, α, φ) where E is a set of events, ≤ is
a partial ordering between events, A is a set of action names, I is a set of processes called
instances, α : E → A is a function associating an action name to each event, and φ : E → I
is a function associating a locality to each event. For a bMSC M , we will define as Min(M)
the set of minimal events for the causal order relation, that is, the set of events with no
causal predecessor.
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Partial orders alone are not sufficient to model interesting behaviors, and some operators
such as choice, loops, and sequence have been proposed. Sequential composition mainly
consists in merging two bMSCs along their common instance axis. This is defined more
formally in the following definition.

Definition 2.2 The sequential composition of two bMSCs M1 and M2 is the bMSC M1 ◦
M2 = (E1 ] E2,≤1◦2, A1 ∪ A2, I1 ∪ I2, α1 ∪ α2, φ1 ∪ φ2), where ≤1◦2=

(
≤1 ] ≤2 ]{(e1, e2) ∈

E1 × E2 | φ(e1) = φ(e2)}
)∗

.

The approach proposed in the paper mainly focuses on the relations between events
executed by an instance called the sender and events executed by another instance called
the receiver of a covert channel, and by the causal relationships between them. Hence, we
will need the notion of projection on an instance, which consists in hiding all events of other
instances in a bMSC.

Definition 2.3 The projection of a bMSC M = (E,≤, A, I, α, φ) on an instance i ∈ I is
the bMSC πi(M) = (E ′ = φ−1(i),≤ ∩ E ′ × E ′, A, {i}, φ|E′). As we assume a total ordering
on instance axes, we will often denote the projection of M on instance i ∈ I by the word
wπi

(M) = e1 · · · en such that {e1, . . . , en} = φ−1(i) and ∀p < q, ep < eq.

As already mentioned, bMSCs alone are not expressive enough to design interesting
behaviors. They have to be extended with operators. A common and widely accepted way
of composing bMSC is called High-level Message Sequence Charts [29], a kind of bMSC
automata.

Definition 2.4 A HMSC is a tuple H = (N,−→,B, n0), where N is a set of nodes, n0 is
a specific node called the “initial node”, B is a set of bMSCs, −→⊆ N × B × N is a set
of transitions. In addition, we sometimes distinguish sink nodes, which are nodes without
successors.

A path in a HMSC is a word p = t1 · t2 · · · tk ∈−→∗. One associates to p the bMSC
Op = l(t1) ◦ · · · ◦ l(tk), the sequential composition of the labels l(ti) of transitions ti in p.

Definition 2.5 A choice node in a HMSC H is a node n with at least two outgoing transi-
tions. A choice node n is local [5,15] if and only if there is a unique instance i ∈ I such that
for all paths p leaving n, φ(min(Op)) = {i}. When a choice n is local, we will say that n is
controlled by i.

In this paper, we only consider local HMSCs, ie, whose choices are all local. Such HMSCs
have been frequently considered and enjoy nice algorithmic properties [11]. Algorithms to
detect the locality property can be found in [5,15]. For the rest of the paper, we will also
need some basic notions on graphs, that are recalled below.

Let G = (V, E) be a graph. A subgraph G′ of G is a pair G′ = (V ′, E ′) such that V ′ ⊆ V
and E ′ ⊆ E ∩ V ′ × V ′. Considering HMSCs as graphs we can define a sub-HMSC of a
HMSC H = (N,−→,B, n0) as a HMSC H ′ = (N ′,−→′,B′, n′0) where N ′ ⊆ N , B′ ⊆ B, and
−→′ ⊆ −→∩N ′ × B′ ×N ′. The complete subgraph on a set of nodes N ′ will be called the
restriction of G to N ′, and noted G|N ′ .
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A strongly connected component of G is a subset V ′ of V such for all v1, v2 ∈ V ′ there is a
path from v1 to v2. For a given graph, a decomposition into strongly connected components
can be performed in linear time using Tarjan’s algorithm [33]. Let us call [v] the strongly
connected component containing v ∈ V . A quotient graph G = (V , E) can be computed from
G, where V is the set of connected components of G, and E ⊆ V×V = {([v1], [v2]) | ∃(v1, v2) ∈
E ∧ [v1] 6= [v2]}. Since G = (V , E) is an acyclic graph, one can define the depth of a strongly
connected component c as d(c) = max{|p| such that p is an acyclic path leading to c in G}.

3 Sending information with decisions nodes and transducers

Let us consider a simple communication protocol that transfers data using short or long data
packets, that are chosen according to the network’s congestion. Now, consider a network
in which two users, Sender and Receiver are allowed to send data to each other, using this
protocol. By choosing long or short data packets, Sender and Receiver can encode 0 and
1, and hence add information over a legal data flow. Clearly, this is not a steganography
problem, as the data transferred is not altered. The situation cannot either be considered as
violating a confinement or a non interference property, as Sender and Receiver are allowed
to communicate. Of course, congestion adds noise to the covert channel, which becomes
inefficient if the network gets saturated.

Open

Short Long Close

HMSC Dummy

bMSC Short

Sender Nertwork Receiver

shortData Data

open open

Sender Nertwork Receiver
bMSC Open

close close

Sender Nertwork Receiver
bMSC Close

ReceiverNertworkSender

LongData
DataInc

Data

bMSC Long

Fig. 1. The DummyIP protocol

A HMSC depicting the main functionalities of our protocol is given in Figure 1. Once a
session is opened, a user can send short data packets, which are forwarded as data packets
to the receiver, or long data packets, which are split into two kinds of packets: DataInc,
meaning incomplete Data packets, followed by Data Packets. From this description of our
protocol, one can see that instance sender can choose to emit short data packets to encode
value 0, and long data packets to encode 1. The receiving instance can then decode a
message by observing the respective order between Data and DataInc packets. Note that
information transfer is only possible if Sender and Receiver have agreed on a protocol for
sending information. Note also that as a message can be of arbitrary length, one needs to
be able to perform an arbitrary number of decisions for encoding it. Hence, for our protocol,
one should not consider session closing as an encoding possibility. Note also that being able
to perform two decisions is not sufficient to transmit information. The choices must have
different observable consequences for the receiver. Suppose that DataInc packet are replaced
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by Data packets. Then, upon reception of 3 data packets, it would become impossible for
a receiver to be sure whether message “0.1” or message “1.0” was sent. Hence, despite the
two possible decisions, the new protocol cannot be used to transfer reliably covert data.

So far, we have mentioned that covert information was encoded by decisions of a sending
instance, and decoded by a receiving instance. In fact, the receiving instance must observe
what happens in the system, and deduce the choices performed by the sender. Such a decoder
can be formally defined as a finite state transducer [2,6], that takes as input the observation
of the system, and outputs a sequence of decisions, ie, the decoded message.

Definition 3.1 A Transducer is a tuple T = (Q, Σin, Σout, δ, QI , F ) where Q is a set of
states, Σin is an input alphabet, Σout is an output alphabet, δ ⊆ Q×Σ∗

in×Σ∗
out×Q, QI ∈ Q

is a set of initial states of T , F ⊆ Q is a set of final or accepting states.

A transducer can be considered as a machine that reads letters from Σin and produces
outputs in Σ∗

out. The outputs of a transducer T for a word w ∈ Σ∗
in will be denoted T (w). A

transition of a transducer can be considered as a rewriting step. Note that transitions can
contain empty words either on input or on output side, ie, transitions of the kind (q, ε, wout, q

′)
and (q, win, ε, q

′) are allowed.

Definition 3.2 A transducer is functional if and only if |T (w)| ≤ 1 for all w ∈ Σ∗
in. Note

that functionality is different from the notion of determinism: a non deterministic transducer
can be functional, and a deterministic transducer can be non functional. The transducer of
Figure 2-a is not deterministic, as two transitions labeled by a/0 leave state 0. However, it is
functional, as the output for a.b is 0.1, even if two different paths of the transducer accept a.b.
The transducer Figure 2-b is deterministic, but not functional, as the word abc generates two
different outputs, 0.1.1 and 1.0.1. In fact, functionality concerns the output produced for a
given word, and not the paths that allow this rewriting. Checking this property is decidable.
[6,32] has proved that for a transducer with m states, deciding whether a transducer is
functional resumes to verifying that for all pairs of states and all words of size ≤ 2m the
output generated by the transducer was unique. While this procedure is exponential, there
is also a quadratic time algorithm [8] for checking this property.
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?DataInc.?Data/1

d)

wait/1

?data/0

?data/0

?end/ε
?restart/1

Fig. 2. Transducers examples

A simple strategy to encode data is to perform choices that ensure that the protocol will
eventually get back to the same decision point. This was proposed as a first covert channel
identification procedure in [16]. The main idea behind this definition of covert channels
is that corrupted users can exploit iterations in protocol’s behavior to get back to states
from which a decision can be taken by the sender in the covert channel, and which causal
consequences can be observed by the receiver.
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The Dummy IP example allows for a transfer of information from a single control point.
The associated decoder is given by transducer of Figure 2-c. However, this kind of attack
can be easily monitored as users iterate systematically the same behaviors. Furthermore,
if encoding from a choice node implies an error scenario (for example requesting a missed
packet), then the number of errors for this user will differ from all users, which may help
detecting an attack. Furthermore, error scenarios are less likely to occur than others. Hence,
covert information transfer might result in an highly unlikely scenario to occur.

With a minimal knowledge of a system, an attacker may however find some more elab-
orated strategies, for which monitoring becomes more difficult. These strategies consist in
moving the systems towards multiple decision points where information transmission is al-
ways possible. Consider the example of Figure 3. Let us decide that encoding 0 at choice
node n1 can be performed by choosing scenario Data, and 1 by scenario Wait . Following the
encoding strategy defined previously, one can decide to choose systematically to get back to
decision node n1 by executing scenario Restart after choosing scenario Wait , hence allowing
another bit transmission. However, at node n2, executing Restart or Resume is another en-
coding possibility. It is also very easy to define the decoder for this more elaborated strategy
(it is given Figure 2-d). So, a covert channel can be implemented if the communicating par-
ties agree on a set of decision nodes that will be used to encode information, and on which
behavior must be executed to encode a bit in each decision node. In fact, these encoding
strategies can be considered as a game between a pair Sender/Receiver, and the rest of the
protocol. The attackers win if they can transmit any message of arbitrary length, and the
protocol wins if he can prevent messages from being passed.

Sender Nertwork Receiver

Data Data

bMSC Data

Close

Data

Open

Wait

End

n0

n1

n3
n2

Resume Restart

bMSC End

Nertwork Nertwork

end

Sender Nertwork Receiver

Wait Wait

bMSC Wait

Sender Nertwork Receiver

close close

bMSC Close
Sender Nertwork Receiver

open open

bMSC Open

Sender Nertwork Receiver

Restart Restart

bMSC Restart bMSC Resume

Sender Nertwork Receiver

Resume

Data
Data

Fig. 3. Protocol containing a covert channel involving two decision points

4 Games

This section recalls some basic notions of game theory. Most of this material is given with
more details in [13]. To avoid the multiplication of formalisms, we have slightly adapted
the traditional definition of arenas to include labels on edges. One can consider covert
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information passing as a two players game where the attacker wins if he transfers information
to its peer, and the protocol wins if it can prevent this information from being reliably passed.
As information to be passed between covert parties is of unbounded size, message passing will
be tightly related to infinite behaviors of HMSCs. In addition to this, as covert information
transfer have to use infinitely often nodes that allow information encoding, our covert game
will be best described as a Muller game.

An arena is a tuple A = (V0, V1, Σ, E) where V0 and V1 are sets of vertices, Σ is an
alphabet, and E ⊆ (V0 ∪ V1)×Σ∗× (V0 ∪ V1) is a set of labeled edges. We note V = V0 ∪ V1,
and for an edge e = (v, w, v′) ∈ E, we call v the origin of e and v′ the goal of e. Arenas are
used to model games with two players 0 and 1. An arena is represented by a graph, with
round and square vertices respectively associated to 0 and 1 vertices (see Figure 6 for an
example). Edges represent “moves”: a move consists in passing from one vertex to another.
In round vertices, player 0 chooses the next move, and in square vertices, player 1 chooses
the next move. A play in an arena is a maximal path in this arena. If a play Π is infinite,
we denote by Inf (Π) the set of vertices that are visited infinitely often. A Muller game is a
pair G = (A,F), where A is an arena, and F ⊆ 2V0∪V1 is a Muller condition. Player 0 is the
winner of a play Π if:

• Π = e0 · · · el is finite and the goal of el is a 1-vertex from which player 1 cannot move.

• Π is an infinite game, and Inf (Π) /∈ F .

Otherwise, player 1 wins the play. Let A be an arena and let σ = {0, 1}. Let fσ : V ∗Vσ −→ 2E

be a partial function. A play prefix Π = e0e1 · · · el, with each move of the form ei =
(vi, w, vi+1) ∈ E, conforms to fσ if for all 0 ≤ i ≤ l such that vi ∈ Vσ, f(v0 · · · vi) is defined
and vi+1 ∈ f(v0 . . . vi). A play Π conforms to a function fσ if and only if all its finite prefixes
conform to fσ.

A function fσ is a strategy for player σ on U ⊆ V if fσ is defined for any prefix of a
game that conforms to fσ, starts from a vertex u ∈ U , and does not end in a sink state for
player σ. Let G = (A,F) be a game, and fσ be a strategy on U for player σ. We say that
fσ is a winning strategy for player σ on U if all plays starting from U and that conform to
fσ are winning plays for σ. A player σ wins a game G on U ⊆ V if and only if he has a
winning strategy on U . A winning strategy fσ is maximal if it is maximal among all winning
strategies for the inclusion relation.

At this stage, the relation between games and covert channel may not appear clearly. Let
us try to gather some ideas that will be used hereafter to define covert channel strategies.
Nodes of HMSCs will be considered as vertices of an arena. The tricky point is to associate
vertices to a player and to define winning strategies in the so defined game. Covert channel
users can be considered as player 1 in this game, and the rest of the protocol as player 0.
First, as covert channel users may want to transfer unbounded amount of information, the
protocol should never reach a sink node. Hence, sink nodes in a HMSC will be associated to
player 1 . Second, winning plays for player 0 (the protocol) will be plays in which information
transmission is impossible for player 1.

Defining information encoding as a game strategy may seem surprising as the protocol
is not playing. In fact, the protocol’s initial purpose is not to counter any cover channel,
but to provide a service, transport information, etc. Therefore, an attacker can be seen as
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playing against a protocol implementation, but a protocol is not playing against the attacker.
However, even if the protocol plays random moves, it may be sufficient to prevent information
passing. We will hence try to exhibit a strategy for corrupted users when the protocol may
play the best move by chance. Note however that it is possible to win a game by playing
randomly... Clearly, the encoding example described in previous section is a simplistic game
with only one state.

5 Potential Covert Channels

In this section, we propose an algorithm to find a transmission strategy using a complete
protocol. A pair sender/receiver will win a game if it has a strategy to transmit information.
Consequently, when the protocol is in a deadlocked state, no information can be transmitted,
and {S, R} lose the game. {S, R} also lose when the protocol remains in a loop in which no
information can be transmitted. The main idea behind the algorithm is to partition the set
of choice nodes of a HMSC into winning and losing nodes for a player, ie, find nodes from
which a player has a strategy to win the game. Intuitively, a “good” move for covert channel
users will be a move after which player 1 will eventually be able to encode data and keep the
control of the protocol, or a move that will force the opponent to perform a move for which
we still have a winning strategy.

Let X be a set of nodes in an arena and σ be a player. Recall that the σ-attractor of X
is the set of nodes from which player σ can force its opponent to move to a node of X. It is
defined by Attσ(X)=

⋃
k Attkσ(X), where:

Att0σ(X) = X Attn+1
σ (X) = Attnσ(X) ∪ {m ∈ Vσ | ∃n ∈ Attnσ(X),∃e = (m, w, n) ∈ E}

∪ {m ∈ V1−σ | e = (m, w, n) ∈ E ⇒ n ∈ Attnσ(X)}
The notion of attractor will be useful to capture the notion of vivacity needed to transfer

messages of unbounded size. The definitions proposed so far will be used mainly to detect
who can control a part or another of a protocol. However, controlling a protocol is not
sufficient to make sure that data can be transmitted. For the simple cycle-based strategy
described Section 3, data encoding was possible if different choices had different observable
consequences. As we are now defining more elaborated strategies, we have to define the
possibility of passing data in a more general way.

Definition 5.1 Let H be a HMSC and R be an instance of H. For a given transition
t = (n, M, n′) of a H, we will define as λR(t) = α(wπR

(M)) the observation of t on R. The
definition can be extended to any path p of H writing λR(t · p) = λR(t) · λR(p).

As already mentioned, the receiver in a covert channel tries to deduce the actions per-
formed by the sender from its observation of the running system. Roughly speaking, λR

defines the sequences of events observed when a scenario is executed.

Definition 5.2 Let H be a HMSC, C be a set of nodes of H, R be an instance, and p
be a path of C. We define as ΛR(C, p) = {λR(p.s) | p.s is a path of H|C}, the set of words
generated by paths starting with a prefix p. One can see ΛR(C, p) as the possible observations
on R when path p is imposed as a start. Note that while the trace language of a HMSC is
in general not regular, its projection on a given instance is regular (hence so is ΛR(C, p)).

10
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In this definition, the path p should be interpreted as a sequence of choices performed
by the sender, and ΛR(C, p) as the set of possible visible consequences (from the receiver’s
point of view) when only transitions of the connected component C are chosen.

Definition 5.3 Let D be a strongly connected component of a HMSC H. We will say that
a choice node m encodes no information in a strongly connected component D and write
E(D, m) iff either S does not control m, or for all t = (m, b1, n1), t′ = (m, b2, n2) such that
n1, n2 ∈ D we have (ε ∪ ΛR(D, t)) ∩ ΛR(D, t′) 6= ∅ or (ε ∪ ΛR(D, t′)) ∩ ΛR(D, t) 6= ∅

More informally, E(D, m) holds iff it is impossible for R to differentiate two choices of
S starting from m. Furthermore, when E(D, m) holds, then it is possible to loop forever
on vertex m without transferring information. Note that E(D, m) can be due to some kind
of non-determinism, but also to the emptiness of observable actions for a receiver. When
E(D, m) holds for all nodes of D, then the strongly connected component D cannot be
used to transmit data. If a protocol can force a pair sender/receiver to stay in a strongly
connected component D where no event is observable or the sequence of events observed is
always the same independently from the choices of the sender, then no data transmission is
possible in D. Note that E({n}, n) holds trivially when n is a sink node.
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Fig. 4. Property E

Consider the graph in Figure 4-a, depicting a strongly connected component D = {n0, n1, n2}
of a HMSC. Nodes are HMSC nodes, and transitions from one node to another are labeled by
λR(t). E(D, n0) holds, as the language observed by R after transition (n0, a, n1) is {abc; ad}∗,
while that observed after transition (n0, ab, n2) is {abc}.{abc; ad}∗. E(D, n2) also holds, as
n2 contains a non observable transition (labeled by ε). However, if n1 is controlled by the
sending instance, E(D, n1) does not hold, as for the two transitions leaving n1, the ob-
servable consequences generated form disjoint languages. Hence, D can be used to encode
information. If we consider the strongly connected component D′ = {n0, n1, n2, n3, n4, n5} in
Figure 4-b, E(D′, x) trivially holds for x ∈ {n1, n2, n3, n4, n5}, as these nodes only have a sin-
gle outgoing transition. If n0 is controlled by the sending instance, E(D′, n0) does not hold,
and starting with a transition labeled with a or with d is sufficient to generate observable
information, even if the output {abcfe} can be generated via two different choices.

Now that zones where data transmission is possible are identified, let us compute the
winning zones for a HMSC. For the sending instance, winning zones are zones where data
transmission is possible without losing control of the channel, and for the protocol, winning
zones are zones from which infinite data transmission is impossible. Obviously, sink nodes
are winning zones for the protocol. In a similar way, all connected components controlled by
the protocol are also winning for this player. Finally, a zone that is not entirely controlled by
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the protocol but does not allow for data transmission is also a winning zone for the protocol.
The 0-attractor of these 3 cases is also a winning subset for the protocol (where 0 is the
player representing the protocol).

The covert channel game is an iterated reachability game. In fact, corrupted users want
the protocol to pass infinitely often in nodes where information encoding is possible. Let
H = (N,−→,B, l) be a HMSC. The arena associated to H is defined as AH = (N0, N1, Σ, E),
where N0 = {n ∈ N | n choice node∧neither S nor R control n}, N1 = N−N0, Σ = λR(B),
E = {(n, λR(b), n′)) | (n, b, n′) ∈ −→}. As stated before, we want to define a covert channel
as a Muller game allowing infinite encoding, that is, whose infinite plays can traverse infinitely
often encoding nodes. We first partition the arena in two sets, Y from which an infinite
encoding will always be possible, and X from which no encoding or only bounded encoding
will be possible.

algorithm: Partition(AH)

X = ∅ (Winning set for the protocol)
Y = ∅ (Winning set for the pair Sender/Receiver)
CC = Tarjan(H) /* computes the strongly connected components of H */

Stack = Stack with connected components ordered by depth (deepest on top)
while Stack 6= ⊥ do

D = POP (Stack)
if D ∩ Y 6= ∅ then Case (1)

D := D − Y
if D 6= ∅ then

PUSH (Tarjan(D))
end if

else
if ∃m ∈ D,¬E(D, m) then

if D ⊆ AttRS({m} ∪ Y ) then Case (2)

Y = AttRS({m} ∪ Y )
else Case (3)

PUSH (Tarjan(D ∩ AttRS({m} ∪ Y )))
PUSH (Tarjan(D − AttRS({m} ∪ Y )))

end if
else Case (4)

/* here, D ∩ Y = ∅ and E(D, m) for all m ∈ D */

X = X ∪D
end if

end if
end while

The algorithm computes a set of nodes X from which the protocol has a strategy to
prevent S and R from passing information of arbitrary length, and Y , the complement of X.
If Y is not empty, then there is potentially a covert channel from S to R in the protocol. This
algorithm studies successively connected components in the arena associated to a scenario
description. For each connected component, several cases depicted Figure 5 may occur. The
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important invariant of the algorithm is that at all stages Y is the {S, R}-attractor of the
encoding states found so far. Note also that any transition leaving a connected component
leads to a vertex located in a deeper component. Hence, the classification of nodes of a
connected component as X or Y node at depth n can rely on classification of nodes of all
components at depth n + 1. Every time a component D is studied, it is either stable with
respect to the set Y computed so far, and can be added to X or Y , or unstable, and is split
into sub-components.

In case 1, D ∩ Y is not empty. Nothing can be deduced yet for D, and the study must
be refined for all connected components of D − Y .

In case 2, ∃m ∈ D,¬E(D, m) and D ⊆ AttRS({m} ∪ Y ). Hence, from any node of D,
S and R can force the protocol to get back to m, or move towards a node of Y. So, D can
be added to Y, and as we want Y to be closed by attraction, Y = AttRS({m} ∪ Y ).

In case 3, ∃m ∈ D,¬E(D, m), as in case 2, but D * AttRS({m} ∪ Y ). So there are
some nodes of D from which it is still possible for the protocol to avoid m or all nodes of Y .
So, we have to refine the search in connected components of D∩ AttRS({m} ∪ Y ) and D−
AttRS({m} ∪ Y ).

In case 4, D is a connected component, and does not contain nodes allowing information
transfer. Furthermore, as D ∩ Y is empty, it is impossible to leave D to reach a part of the
arena where data transfer is possible. Hence, D can be added to X.
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Fig. 5. Different configurations of the algorithm

Let us apply this algorithm on the example of Figure 6. Strongly connected compo-
nents CCi of this arena are identified by dashed rectangles. Nodes controlled by the pair
Sender/receiver are symbolized by squares, and nodes controlled by the rest of the pro-
tocol are symbolized by circles. Sink nodes are supposed to be controlled by the pair
sender/receiver. They are obviously winning nodes for the protocol, as it is the attacker’s
turn to move, and no move is allowed from these nodes.

We first start with CC7.CC5.CC6.CC4.CC3.CC8.CC2.CC1 in the stack, and with X =

13
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∅, Y = ∅. The first five steps of the algorithm are trivial, since E(CCi, n) holds for all nodes
n ∈ CCi and i ∈ 3..7. (Observe indeed that no choice node of these CCi is controlled by
{S, R}.) Then, case 4 applies, and it just consists in adding vertices of these connected com-
ponents to X. After step 5, we hence have X = {5, 6, 7, 8, 9, 10, 11, 12}. Step six pops CC8,
which is of different nature, as it contains node 13, and ¬E(CC8, 13). Here, case 3 applies, we
have to separate CC8 into two connected components, CC8,1 = CC8∩AttRS({13}) = {13, 15}
and CC8,1 = CC8−AttRS({13}) = {14, 16}. Step 7 and 8 will then add CC8,1 to Y as it con-
forms to case 2, and CC8,2 to X (case4). Similarly, CC2 will be added to Y and CC1 to X.
The algorithm terminates with X = {1, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16} and Y = {2, 3, 4, 13, 15}.
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Fig. 6. Computing X and Y

Now that we have computed a set from which a node enabling information encoding
can be reached in a finite number of steps, we also have to define winning subsets (in the
Muller sense). Staying in Y is not sufficient to ensure that information is transmitted:
Y is not accurate enough. We cannot either require that all nodes y such that ¬E(D, y)
for some connected component D appear infinitely often, as the game can be stuck in a
peculiar connected component and remain a winning game for the pair {S, R}. Hence,
we can define the winning condition of our covert channel game as the Muller condition
Win(Y ) = 2Y − {P ∈ 2Y | ∀n ∈ P, E(P, n)}. A node y ∈ Y such that ∃W ∈ Win(Y ) and
¬E(W, y) will be called an encoding node. The winning subsets of Win(Y ) define the parts
of the protocol that can be used by the sending instance to create a covert channel. For an
attacker, staying in a restricted part of the protocol behaviors (typically a small strongly
connected component of the HMSC graph) can be sufficient to transfer information. It is
convenient, as the sender needs fewer memory to implement a covert channel 4 , but makes a
channel more vulnerable to monitoring applications that compare users behaviors to profiles
of honest users. Hence, a “good” strategy for a sender is to use the larger possible part of
the protocol to send information while mimicking the behavior of honest users.

4 The simple Büchi condition Win(Y ) = Y − {y|∀W ⊆ Y, E(W, y)} is sufficient to exhibit strategies which
conform plays traverse some encoding nodes infinitely often. However, a Muller condition allows for strategies
using larger parts of the specification (that cannot always be obtained by Büchi conditions). With such
strategies, covert channel use are more likely to be similar to honest behaviors.
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Proposition 5.4 Let GH = (AH , Win(Y )) be the Muller game associated to H, with Y 6= ∅.
From GH, one can compute a maximal strategy fY for nodes controlled by S and R such that:

i) any infinite run in Y that conforms to fY passes infinitely often through a set of en-
coding nodes.

ii) For all encoding node y and all v0, . . . vl such that v0 · · · vl.y is a path, fY (v0 · · · vl.y)
contains at least two transitions t1,t2 such that ΛR(Y, t1) ∩ ΛR(Y, t2) = ∅.

proof: If Y 6= ∅, then from the construction algorithm, ∀y ∈ Y , ∃D, ∃y′ ∈ D, such that
¬E(D, y′) and y ∈ AttRS(y′). So, for all y ∈ Y , there is a (positional) strategy leading from y
to an encoding node. Hence, there exists a strategy f that leads from any node to an encoding
node, and from an encoding node to another encoding node. As the number of encoding
nodes is finite, any play that conforms to this strategy passes infinitely often through a set
of encoding nodes. Note however that this strategy f is not necessarily maximal.

Let us build the parity automata PH associated to our Muller game. Let us call K the
size of PH . The states of our parity automata will be of the form v1 . . . vk.y, with k < K.
We can observe that a strategy for this parity automata is in fact a sub-graph of PH . We
can also note that a strategy in PH will be a winning strategy if it does not allow passing
infinitely often through a set of nodes

⋃
i∈I v1i

. . . vki
.yi that does not contain encoding nodes.

Hence, a strategy f will be a winning strategy iff the subgraph of PH associated to f does
not contain a “silent cycle”, ie, a cycle on a set of states

⋃
i∈I v1i

. . . vki
.yi that does not

contain encoding nodes.

So, from a winning strategy f , one can add a chain leading from a node to another
if it does not create silent cycles. The new strategy computed will be bigger (in terms of
transitions allowed) than f .

After a certain number of additions, it will not be possible to add a single transition to
the strategy without creating a silent cycle, and the strategy obtained will be maximal.

This proves point i) of proposition. Let us now prove point ii). Adding any transition
from a state s = v1 . . . vk.y where y is an encoding node to another state s′v′1 . . . v′k.y

′ to a
winning strategy f does not create silent cycles, as all the new cycles created pass through
s, and are hence not silent. �

Note that maximal winning strategies are not unique. Note also that this proof just
establishes the existence of a maximal winning strategy, but does not provides the most
efficient algorithm to compute such strategy. In fact, to solve our problem, a strategy only
have to remember the set of visited states, and not their order of appearance, which lets
us suppose that the problem can be solved as the research of a positional strategy on an
automata of size n.2n instead of the usual n.!n for Muller games.

Intuitively, the existence of two transitions with different observable consequences means
that a bit can be encoded. Finding a winning strategy for {S, R} just indicates that there is
a possible information transfer, not that this transfer is always decipherable by the receiver.
For this, we have to build a transducer that observes the behaviors of the system and outputs
a decoded message.
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6 Building a transducer for message decoding

The message received by a receiving instance can be seen as a continuous flow of events, and
its decoding will be correct only when this flow can be properly segmented to deduce the
sequence of choices that have been performed by a sender. Let Y be a winning set computed
from H = (N,−→,B, n0), PH be the parity game associated to the Muller game on Y with
winning condition Win(Y ). Let fY : Y ∗ −→ 2−→ be a maximal strategy computed from PH .
The transducer associated to fY is the transducer TfY

= (Q, Σin, Σout, δ, QI , F ) where:

• Q = QI = dom(fY ), Σin =
⋃
b∈B

λR(b)

• Σout = {ε} ∪ {t = (y, b, y′) | ¬E(X, y) for some X ∈ Win(Y )}
• δ = {(w.y, σin, t, w

′.y′) | w.y and w′.y′ are vertices of PH , (w.y, w′.y) is an edge of PH ,
∃t = (y, b, y′) ∈ Y × B × Y,
σin = λR(b) ∧ t = (y, b, y′) ∈ fY (w.y) ∧ ∃X ∈ Win(Y ),¬E(X, y)}

∪{(w.y, σin, ε, w
′.y′) | w.y and w′.y′ are vertices of PH , (w.y, w′.y)is an edge of PH ,

∃t = (y, b, y′) ∈ Y × B × Y, σin = λR(b) ∧ ∀X ∈ 2Y , E(X, y)}
• F = {w.y ∈ Dom(fY ) | ¬E(X, y) for some X ∈ Win(Y )}

The transducer TfY
reads observations of the receiving instance R, and outputs the

sequence of choices at encoding nodes that may have engendered this observation (ie a list
of transitions). When a transition is not leaving an encoding node, it does not participate
in the covert transmission, and it is replaced by ε. The states of the transducer is the set of
vertices computed for the parity game PH , and the transitions are labeled by a pair σin/σout

when a transition is allowed by the strategy fY . When a transition t = (s, b, s′) leaves an
encoding vertex, σout is the name of the transition, otherwise σout = ε. In both cases, σin

represents the observation of the receiver (σin = λR(b)).

Definition 6.1 Let T be a set of transitions leaving nodes controlled by S, and such that
∀t = (y, b, y′), ∃t′ = (y, b′, y′′) originating from the same node. One can define a partition P
of T into two subsets T0 and T1 such that for all y, ∃t0 = (y, b, y′) ∈ T0∧∃t1 = (y, b, y′′) ∈ T1.

For a given partition of a set T of transitions, let us define the interpretation J KP as the
function J KP : X ∪ {ε} −→ {T0, T1, ε} that associates the corresponding partition to each
transition of T , ε to ε, and also ε to each transition of X − T .

Theorem 6.2 Let H be a HMSC, and AH be the associated arena. Let Y be the winning set
computed on AH , and Win(Y ) be the winning conditions included in Y . Let f be a strategy
for Y,Win(Y ) and TfY

be the transducer associated to Y and f . If TfY
is functional, then

there exists an interpretation J KP such that:

∀y ∈ Y, ∀m ∈ {0, 1}∗,∃p = t1. . . . tk with t1 = (y, b, y1) and JTfY
(λR(p))KP ≡ m

proof: by induction on the length of m.

For m = 0, for all y, there is a finite path p leading to a node y′ such that E(y′). Hence,
there are at least two transitions t0, t1 such that ΛR(Y, t1) ∩ ΛR(t2) = ∅. Hence, there is
a partition P = {T0, T1} with t0 ∈ T0 and t1 ∈ T1, and then JTfY

(λR(p.t0))KP ≡ 0 and
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JTfY
(λR(p.t1))KP ≡ 1.

Let us suppose that this property is satisfied for any message of size ≤ n, and let us show
that it is also true for a message of size n + 1.

As m is of size n + 1, m can be decomposed as m = m′.{0, 1}, with |m′| = n. Hence, for
any y there is a partition and a path p = t1 . . . tk such that JTfY

(λR(p))KP ≡ m. Furthermore,
the path p leads to a node y′, for which there exists a path p0 with JTfY

(λR(p0))KP ≡ 0, and
a path p1 with JTfY

(λR(p1))KP ≡ 1. Hence, for all y there is a path p′ = p0 or p′ = p1 from
y such that JTfY

(λR(p.p′))KP ≡ m′. �
Intuitively, this theorem says that is TfY

is functional, the receiver can decode messages
generated to it by the strategy of the pair {S, R}. It gives sufficient conditions for making
possible an encoding of a message through decisions in a protocol It is easy to see why
this condition is only sufficient. Consider the HMSC of Figure 7. A message m ∈ {0, 1}∗
of arbitrary length can be encoded by scenario Datan.Close, where n is the number which
binary representation is m. We have only defined the property for an encoding of 0 and 1 from
encoding nodes, which is sufficient to characterize information transmission. However, more
accurate partitions of transition sets can be used to transfer more than 1 bit at each encoding
node. If a decision node y has ny outgoing transitions with pairwise disjoint observable
languages, then a decision at node y can encode up to log2(ny) bits of information.

Determining if a transducer is functional is quadratic [8]. However, as we are studying
abstract and incomplete models, the size of the transducers is usually small. Note also
that transducer functionality can be replaced by a simpler requirement. One can just ask
the language on the receiving instance to be a code [7]. This property detects less covert
channels, but can be computed very efficiently.

Sender Nertwork Receiver

close close

bMSC Close bMSC Data

Sender Nertwork Receiver

shortData
Data

Data Close

Fig. 7. A different encoding

7 Conclusion and future work

This paper shows how to characterize the presence of covert channels from a scenario rep-
resentation H of a system. The first step consists in identifying a “live” subset of H from
which a message encoding is possible in a bounded number of decisions. Then, searching a
maximal strategy in the live subset of H and the construction of the transducer associated
to this strategy allows us to determine if a non ambiguous message transmission is possible.
The fact that the covert channel game is defined as a Muller game, and that strategies are
maximal and non deterministic allows a wide range of behaviors that were possible in the
initial specification. This increases the capacity of our channels, and makes online detection
of obfuscated uses of a system harder (the more normally a system behaves in presence of
corrupted users, the harder it is to detect a covert channel use).
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Ambiguous transducers do not mean that covert information passing is impossible, but
rather that the channel contains noise. A study to compute noisy covert channels capacity
using information theory is currently undergone. The main difficulty to compute capacities
and rates is that in the asynchronous systems depicted by our scenarios, all encodings are
not performed in constant time. Note that to build an efficient strategy, one does not need
to remember the order between visited nodes, but only the visited nodes since the last visit
of an encoding node. This lets us suppose that a more efficient strategy may be found.

So far, we have considered centralized strategies, where R can take decision to help S
transmitting data. This provides necessary conditions for an attack and synthesizes global
scenarios exhibiting the channel. However, in a distributed framework, such a strategy
might not be implementable without introducing additional ambiguity, due to the fact that
instances {S, R} only have a partial view of the system. Finally, we only considered a pair
{S, R} of attackers. An extension of this work is to study when a team of processes can
create a covert channel. This includes several senders and receivers, and processes being
able to act successively as senders or as receivers. However, if considering several senders
seems very easy with our approach, having several receivers raises some more complicated
issues, and potentially undecidable problems. When several receivers are considered for the
encoded message, projections on a set of processes is not necessarily a regular language, and
finding encoding nodes (which relies on language intersection emptiness) may become an
undecidable problem.
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