
{norka,jmpease, pyadolla, chapin}@ecs.syr.edu



Syntax and Semantics-Preserving
Application-Layer Protocol Steganography?

Norka B. Lucena, James Pease, Payman Yadollahpour, Steve J. Chapin

Systems Assurance Institute
Syracuse University

111 College Place 3-114, Syracuse, NY 13244

Abstract. Protocol steganography allows users who wish to commu-
nicate secretly to embed information within other messages and net-
work control protocols used by common applications. This form of un-
observable communication can be used as means to enhance privacy
and anonymity as well as for many other purposes, ranging from en-
tertainment to protected business communication or national defense.
In this paper, we describe our approach to application-layer protocol
steganography, describing how we can embed messages into a commonly
used TCP/IP protocol. We also introduce the notions of syntax and se-
mantics preservation, which ensure that messages after embedding still
conform to the host protocol. Based on those concepts, we attempt to
produce reasonably secure and robust stegosystems. To demonstrate the
efficacy of our approach, we have implemented protocol steganography
within the Secure Shell (SSH) protocol. Findings indicate that proto-
col steganographic system is reasonably secure if the statistical profile
of the covermessages and the statistical profile of its traffic match their
counterparts after embedding.
Keywords: steganography, application protocols, syntax, semantics, SSH

1 Introduction

Steganography, from the Greek “covered writing,” refers to the practice of hi-
ding information within other information [1]. Its purpose is to allow two parties
to communicate in such a way that the presence of the message cannot be de-
tected. While cryptography focuses on protecting the content of the message,
steganography conceals the mere existence of the message. Classical steganogra-
phy comprises a broad variety of methods and materials, ranging from tattooing
messengers’ heads to using invisible ink and microdots. Modern steganography
involves digital media and techniques: images, formatted and written text, di-
gital sounds, and video, as well as some others less orthodox such as storage
devices and TCP/IP packets [2]. In recent years,the evolution of stegosystems
has received particular attention, as have the security and robustness of their
? This work was supported in part by the State of New York, the CASE Center’s

SUPRIA program at Syracuse University, and the Air Force Research Laboratory
(AFRL).



methods [3–7]. In this context, protocol steganography arises as a new means of
hiding information in Internet messages to achieve secret communication.

Protocol steganography is the art of embedding information within mes-
sages and network control protocols used by common applications [8]. Protocol
steganography takes advantage of existing application-layer network traffic to
communicate privately, which could be a useful and important means of com-
munication in many different areas. It can be effective in law enforcement for
undercover investigations and espionage. For example, it could have been con-
venient for “Enron whistleblower” Sheron Watkins to have set up a private
communication channel with the District Attorney’s office that worked without
having to deploy special anonymity frameworks, but utilizing the traffic gene-
rated by one of her regular web-browsing sessions. The business arena can also
benefit from hiding the communication when doing important negotiations.

Early attempts at hiding information within network protocols were based
on the discovery of covert channels—communication channels neither designed
nor intended to transfer information at all [9]—in TCP/IP packets [10–13]). In
contrast, our approach of protocol steganography specifically targets application-
layer protocols such SMTP (for email service), FTP (for file transfer), SSH (for
secure login), LDAP (for distributed directory services), and HTTP (for web
browsing, which alone accounted for over 53% of all Internet traffic in 2002
[14]). We aim to hide information within the format and structure of the proto-
col, and not in the transmitted content, such as images, sounds, text, or video.
Information hiding within these content types can be achieve using well-known
steganographic techniques before the content is sent across the network.

The most relevant feature of a steganographic system is how secure it is.
At the moment, there is controversy in the field regarding the definition of a
perfectly secure system [15, 16]. The most cited approaches are based on in-
formation theory and the ideas of security taken from cryptography definitions
[17–20]. There are other definitions such as the Ettinger’s game-theoretical def-
inition [21] and the complexity-theoretical definitions in [22, 23]. However, to
the best of our knowledge, there is no record of any implemented stegosystem
proven secure under those definitions. We recognize the enormous effort put be-
hind producing an exact mathematical definition of security, but for this paper
we limited our approach to produce an empirically and “reasonably secure” [24]
stegosystem.

The remainder of this paper is organized as follows. Section 2 explains the
concepts of security and robustness in terms of protocol steganography. Section
3 describes the model for secret communication considered in our approach and
discusses its potential advantages. Section 4 presents a summary of the research
to date and related work in relevant areas of steganography. Section 5 explores
the concept of protocol steganography through the SSH protocol, describes a
prototype implementation, and discusses consequences and important issues re-
garding security and robustness of the approach as well. Finally, Section 6 lists
some conclusions and remarks of lessons learned.



2 Security and Robustness in Protocol Steganography

Steganographic systems are usually defined in terms of three elements: capacity,
security, and robustness. Capacity is the amount of information that can be
hidden in the cover. Security refers to the difficulty that a knowledgeable adver-
sary (one who understands the stegosystem) has in obtaining evidence or even
grounds for suspicion that a secret communication is taking place. Robustness is
the amount of alteration a stegomessage can support without the hidden mes-
sage being destroyed [1, 25]. For this study, we focus in examining both security
and robustness of our steganographic methods against the threat of passive and
active adversaries more than in increasing their capacity.

The protocol steganography model assumes prior knowledge of the distribu-
tion of the covers, standard practice when defining stegosystems. This allows
to produce appropriate embedding and extraction methods which minimize or
eliminate alterations in the statistical profile of the covermessages. Protocol
steganography however needs to deal not only with the characteristics of the
covermessage itself but also with the statistical profile of its traffic such as the
distribution of the payload length. A reasonably secure protocol stegosystem is
one in which the adversary cannot distinguish between a covermessage and a
stegomessage by analyzing the meaning of the packet payload and the statistical
properties of the protocol traffic. Stegomessages are reasonably robust if, after
alterations from a malicious attacker, they are rendered inadequate regarding
their protocol semantics. Stegomessages that are not semantically valid usually
cause the interruption of the overt communication.

Seeking to produce both secure and robust stegosystems, we define two con-
cepts for stegomessages: syntax preservation and semantics preservation. Syntax
preservation guarantees that the stegomessage is well formed within the rules of
the protocol; the actual meaning of the stegomessage may be different than the
original cover. Semantics preservation means that, as observed at a point along
the message’s path through the network, the stegomessage has the same mean-
ing as the original cover. Semantics preservation is stronger than, and implies,
syntax preservation. Semantics preservation increases robustness—it reduces or
eliminates the possibility for an active attacker to render the hidden message
useless without causing substantial damage to the packet, thereby breaking the
overt communication. The early work in covert channels was, in general, neither
syntax nor semantics preserving, and depended on routers not performing tight
checking against the protocol specification.

3 Framework for Secret Communication

Our model for protocol steganography involves two agents who wish to commu-
nicate secretly through arbitrary Internet traffic in a hostile environment (see
Figure 1). Alice and Bob [26] are two agents who wish to communicate secretly.
To achieve that, they use a communication path already in place between them-
selves or two arbitrary communicating processes, the sender and receiver. Adver-
saries located between Alice and Bob can be both active or passive. A passive



adversary, Eve, observes the communication to discover stegomessages. Eve’s
eventual goal is to find the embedded information, and prove its existence to a
third party, if necessary. An active adversary, Mallory [27] attempts to remove
the embedded message during the communication process, while preserving the
integrity of the cover.

Fig. 1. Framework for Secret Communication.

Two scenarios are possible depending on whether or not Alice and Bob are
the same as the sender and the receiver, respectively. In the first case, Alice and
Bob are trying to hide secret information in some of their own harmless mes-
sages, as in traditional steganography models. They both run a modified version
of the communicating software that allows them to convey the secret message.
In the second case, Alice and Bob are placed somewhere along an arbitrary
communication path, modifying messages in transit to hide meaningful informa-
tion. In short, both the internal agent and the external confederate might be
either end points of the communication or middlemen, acting to embed and ex-
tract the hidden message as the data passes them in the communication stream.
In fact, the receiving middleman has the option of removing the hidden message,
thus restoring and forwarding the original covermessage. The midpoints where
Alice and Bob can alter the message might be within the protocol stack of the
sending and receiving machines (which is still distinct from the sending pro-
cess), or at routers along the communication path. These arbitrary boundaries
are indicated by the dashed boxes in Figure 1.

Considering all combinations of internal agents and external confederates
and all different points where the message can be altered yields six different
combinations of roles for the agents, as shown in Figure 2. In this discussion,
following the established information hiding terminology [28], Alice executes the
embedding process and Bob the extraction process, represented in the picture
as a circle and a diamond, respectively. As pointed out by Pfitzmann [28], the
embedding and extracting processes may require the use of a stegokey, not shown
in the picture. The cover (i.e. the original harmless message) is m, and the
stegomessage (i.e. the message with steganographic content) is m′.

The six possible sets of agent roles are as follows:

1. Alice acts as sender and Bob as receiver—the message along the entire path
is m′.



Fig. 2. Message Paths.

2. Alice is a middleman, embedding information to the message on its way, and
Bob acts as receiver—the message from the sender to Alice’s location is m,
while from there to the endpoint is m′.

3. Both agents are middlemen, and Bob restores the message to its original
form—the message from the sender ’s point to where Alice’s location is m,
from Alice’s to Bob’s is m′, and from there to the endpoint is m again,
because extraction of the hidden content and restoration of the original cover
message occurred at Bob’s location.

4. Both agents are middlemen, but Bob does not restore the message—the
message from the sender ’s point to the Alice’s location is m, and from Alice’s
to the receiver ’s point is m′, with the hidden information extracted at Bob’s
location while the message was in transit.

5. Alice is acting as sender, with Bob as a middleman extracting the embedded
information and restoring the original message—the message from the initial
point to Bob’s location is m′, and from Bob’s location to the receiver ’s point
is m.

6. Alice is acting as sender and Bob is a middleman extracting the hidden
information without restoring the message as it travels to the receiver—the
message from end to end is m′, but B gets the hidden content somewhere
before the message reaches its destination.

Even though not every one of these scenarios might be realistic, cases 1 and
3 certainly are. Thus, they were the focus of this study. All the options where
the hidden content is extracted but the message is not restored seem risky. In
particular, case 4 wherein the message seen by the receiver is clearly different
from that seen by the sender, neither of whom are the agents communicating
secretly.

3.1 Issues with Middlemen

Having the agents acting as middlemen in the communication stream provides
several advantages, because any packet that will flow past the locations where
Alice and Bob are can be modified (as long as an embedding function that



preserves both syntax and semantics is available for the transport or application
protocol in that packet). That intermediate location lowers the susceptibility to
traffic analysis, as there is no longer a single source/sink for the stegomessages,
and there is no specific protocol used. It also allows us to achieve a higher bit
rate as well as privacy, anonymity, and plausible deniability, in some cases. In
the case of undercover operations, for example, an ideal situation would be that
Alice is located on the last router inside the sender’s domain (the egress router
for that domain), and Bob is located on the first router outside the domain
(the ingress router). In such scheme, m′ will be “on the wire” for the minimum
possible time, lowering the probability of detection.

Detection of packet modifications along the communication path might seem
trivial for an observer monitoring the network. We argue that it is not. First of
all, the modified packets at the embedding and the extraction points will be both
syntax and semantics preserving, which evades routing and intrusion detection
defense mechanisms. Secondly, individual packet comparison from both sides of
an embedding/extraction point is resource intensive and not currently done by
IDS systems to avoid the overhead incurred with large amounts of traffic. Lastly,
routine network operations for most IPSs, for example, involve the collection of
aggregate traffic statistics rather than individual packet analysis, because of the
high volume [29].

IP fragmentation is another issue that can affect the reliability of the commu-
nication when the agents are middlemen. When the application-layer protocol
uses TCP as transport protocol, we assume that the packets used as carrier are
delivered reliably. If there still exist packet loses, they are treated as communi-
cation errors. Fragmentation rates in packets of TCP applications are minimal.
In addition, most of them set the “don’t fragment” bit on. In contrast, when the
application-layer protocol uses UDP, additional mechanisms need to be imple-
mented to guarantee that Bob actually receives the message sent by Alice.

4 Related Work

Handel and Sandford [11] reported the existence of covert channels within net-
work communication protocols. They described different methods of creating
and exploiting hidden channels in the OSI network model, based on the char-
acteristics of each layer. In particular, regarding to the application layer, they
suggested covert messaging systems through features of the applications run-
ning in the layer, such as programming macros in a word processor. In contrast,
the protocol steganography approach studies hiding information within mes-
sages and network control protocols used by the applications, not inside images
transmitted as attachments by an email application, for example.

Examples of implementation of covert channels in the TCP/IP protocol suite
are presented by Rowland [13], Project Loki [12], Ka0ticSH [30], and more deeply
and extensively by Dunigan [10]. These researchers focused their attention in the
network and transport layers of the OSI network model. In spite of that, Dunigan
[10] did point out in his discussion of network steganography that application-



layer protocols, such as Telnet, FTP, SMTP, and HTTP, could possibly carry
hidden information in their own set of headers and control information. How-
ever, he did not develop any technique targeting these protocols. Rowland [13]
implemented three methods of encoding information in the TCP/IP header: ma-
nipulating the IP identification field, with the initial sequence number field, and
with the TCP acknowledge sequence number field “bounce.” Dunigan [10] ana-
lyzed the embedding of information, not only in those fields, but in some other
fields of both the IP and the UDP headers as well as in the ICMP protocol
header. He based his analysis mainly in the statistical distribution of the fields
and the behavior of the protocol itself. Project Loki [12, 30] explored the concept
of ICMP tunneling, exploiting covert channels inside of ICMP ECHO traffic. All
these approaches, without minimizing their importance, can be detected or de-
feated with the latest router and firewall technology.

One such mechanism is reported in Fisk et al. [31]. Their work defines two
classes of information in network protocols: structured and unstructured car-
riers. Structured carriers present well-defined, objective semantics, and can be
checked for fidelity en route (e.g., TCP packets can be checked to ensure they are
semantically correct according to the protocol). On the contrary, unstructured
carriers, such as images, audio, or natural language, lack objectively defined
semantics and are mostly interpreted by humans rather than computers. The
defensive mechanism they developed aims to achieve security without spending
time looking for hidden messages: using active wardens they defeat stegano-
graphy by making strong semantic-preserving alterations to packet headers (e.g.
zeroing the padding bits in a TCP packet). The most important considerations
to their work related to protocol steganography are the identification of the co-
vermessages in used as structured carrier, and the feasibility of similar methods
of steganalysis that target application-layer protocols.

Recently, researches are focusing more of their attention in the use of covert
channels using specifically the HTTP protocol. Bowyer [32] described a theo-
retical example without implementation, wherein a remote access Trojan horse
communicates secretly with its control using an HTTP GET request. Although
this approach takes advantage of the semantics of regular HTTP messages, as
we intent to do, it is different from our approach because it can be blocked by
restricting access to certain websites, or by scanning images for steganographic
content. Bauer [33] proposed the use of cover channels in HTTP to enlarge
anonymity sets and provide unobservability in mix networks. He shares our view
of using traffic generated by other subjects to hide communication.

5 A Case Study: SSH

The SSH protocol provides secure remote login and other secure network ser-
vices over an insecure network [34]. It does so through mechanisms that supply
server authentication, confidentiality, and integrity with perfect forward secrecy.
There are several implementations of SSH, both commercial and open-source.
The latest and most widely used version of the protocol is SSH2.



Fig. 3. SSH2 Protocol Architecture.

The SSH2 protocol consists of three major components shown in Figure 3:

– Transport Layer Protocol. Provides server cryptographic authentication,
confidentiality through strong encryption, and integrity plus, optionally,
compression. Typically, it runs over a TCP/IP connection listening for con-
nections on port 22.

– User Authentication Protocol. Authenticates the client-side user to the
server. It runs over the transport layer protocol.

– Connection Protocol. Multiplexes the encrypted tunnel into several log-
ical channels. It runs over the user authentication protocol. It provides in-
teractive login sessions, remote execution of commands, forwarded TCP/IP
connections, and forwarded X11 connections.

Fig. 4. SSH2 Binary Packet Protocol.

In particular, the Transport Layer protocol defines the Binary Packet Pro-
tocol, which establishes the format SSH packets follow (see Figure 4). It consists
of five fields. Packet length is an unsigned 32-bit integer representing the length
of the packet data in octets. Padding length is the number of octets representing
the length of the padding. Packet data is the actual content of the message.
Random padding is an arbitrary-length padding appended to the packet data, so
the payload reaches the block cipher sizes specified by the protocol. MAC cor-
responds to the message authentication code, which is computed if previously
negotiated. The packet length, padding length, packet data, and random padding
fields are encrypted. The packet data and the random padding are compressed
before encryption, if compression was specified during the connection setup.



SSH was selected as our first Protocol Steganography case of study for se-
veral reasons, with the randomness of the content of its packets being the most
important. Encrypted traffic provides an appropriate cover for other messages
with uniform distribution, e.g. additional encrypted data. We can blend hidden
content securely within what is considered “normal” traffic, without altering the
statistical properties of the payload. In addition to that, the fact that the SSH
traffic is encrypted may deter adversaries from trying to analyze its content, as
pointed out by Barrett and Silverman [35]. Lastly, SSH is widely used and use
TCP as transport protocol, which guarantees delivery packets even when they
are fragmented.

5.1 Prototype Implementation

We identified several potential possibilities of information hiding in the SSH
protocol structure, but selected only two of them for implementation: generating
a MAC-like message and adding additional encrypted content to the packet.
Such methods of hiding information match, respectively, cases 1 and 3 of our
framework of secret communication, described in Figure 1. Case 1 assumes that
Alice is the sender and Bob is the receiver. In Case 3, both agents Alice and
Bob are middlemen located along the communication path. Then, Bob needs to
restore the stegomessage to the covermessage after extracting the hidden message
embedded by Alice.

Both implementations were coded in C, tested under Red Hat 8.0, and each
of them runs independently of the other. For implementing the first scenario
of secret communication, generating a MAC-like message, we modified version
3.5 of Open SSH (http://www.openssh.org), a popular open-source SSH pro-
duct. For the second scenario, adding encrypted content, we developed a kernel
module to capture packets in transit and we tested the system using unmodified
OpenSSH 3.5.

Generating a MAC-like Message. In this steganography scenario Alice (the
sender) and Bob (the receiver) are running identically-modified software. At first
sight, it might seem strange to pursue secret communication over an already en-
crypted channel. However, this example of protocol steganography is appropriate
for environments where unobtrusive communications are required in the pres-
ence of traffic analysis, particularly the number and frequency of messages. In
the military and intelligence agencies, even if the content of the communication
is encrypted, a significant increase in communications between military units
could signal an impending attack [1]. For example, Alice might be working at
the Pentagon and Bob might be a high-level commander in the Middle East. To
avoid eavesdropping by terrorists, they encrypt their messages using OpenSSH.
It is not possible for the adversary to decipher the messages being sent, but the
adversary can perform traffic analysis by studying the length and frequency of
the messages exchanged. A sudden increase in traffic gives a clear indication that
something “big” is going on.



As shown in Figure 4, the SSH2 specification defines a message authentica-
tion code field. The MAC is computed with a previously negotiated MAC algo-
rithm using the key, the sequence number of the packet, and the unencrypted
(but compressed, if compression is required) packet data. The MAC algorithms
defined by the protocol are hmac-sha1, hmac-sha1-96, hmac-md5, and hmac-
md5-96 whose digest lengths vary from 12 to 20 octets. Therefore, generating a
MAC-like message will allows us to transmit up to 20 additional octets of per
packet.

To simulate the randomness of the MAC, the embedded messages are pre-
viously compressed and then encrypted. The modified version of the SSH client
reads the content to be embedded from a file compressed with GZip (http://www.
gzip.org) and encrypted with the GNU Privacy Guard software (http://www.
gnupg.org), using the Blowfish algorithm. It embeds and extracts exactly the
same amount of octets reserved for computing the MAC in the selected algo-
rithm. At the receiving end, the modified version of the SSH server ignores
recomputing the MAC and comparing it with the one received from the client,
because the server is action as Bob. Instead, Bob saves the MAC-like message
into a file.

The drawback of this implementation is the impossibility of verifying whether
the actual payload of the message was correctly transmitted or not, as a conse-
quence of replacing the MAC. Information about the error rates in transmission
of SSH packets will be useful for better understanding the validity of this ap-
proach. However, augmenting a short MAC might be a way of getting around
this issue. Because the different MAC algorithms offered by SSH produce MACs
of different lengths, it would still be possible to select an algorithm with a short
MAC and pad the stegomessage to it. For example, if the hmac-md5-96 algo-
rithm, which computes a 12-octet MAC is used, we can add 8 octets of secret
information to each packet, bringing the pseudo-MAC up to the 20-octet limit.
Of course, for this approach to work, Alice and Bob must agree in advance on
what algorithm to use. That is trivial to set up through the SSH authentication
mechanism. Moreover, when they are not planning to communicate secretly,
Alice and Bob can choose to use the hmac-sha1 algorithm which computes a
MAC of length 20, so the average total lengths of their SSH packets does not
raise suspicion.

Because we are maintaining the randomness of the covermessage when crea-
ting a stegomessage as well as the distribution of the payload length, we consider
this stegomethod to be reasonably secure. Eve cannot distinguish between two
encrypted payloads (cover and stego) of the same size. Because of particular
properties of the SSH protocol, embedding a MAC-like message is reasonably
robust. SSH takes any change in the MAC at the receiving end as a signal of
existence of an attacker somewhere in the middle of the communication stream.
SSH issues a warning and the session will be interrupted (normal behavior of
the protocol). Mallory cannot then recompute and substitute the MAC (besides
that involves having knowledge of the encrypted packet payload, the keys, and
the algorithms used). Mallory cannot make subtle changes to the packet either,



such as switching some bits. Our implementation takes similar actions to the
ones SSH takes when there when the hidden message is not meaningful to Bob.

Adding Additional Encrypted Content to the Packet. This prototype
implementation works in the secret communication environments described in
cases 2, 3, or 4. However, we will consider only case 3 in this discussion because
it is the most challenging. Both Alice and Bob are middlemen located some-
where along the communication path. Alice intercepts a packet from the sender,
embeds a portion of her secret message on it, and sends it on. Bob extracts the
hidden content and restores the message as it originally was before it reaches
its destination. Alice and Bob can be any two parties who wish to communicate
secretly by taking advantage of available SSH traffic on the Internet.

This implementation intercepts the SSH traffic and inserts an additional
encrypted message at the beginning of the already encrypted payload, as detailed
in Figure 5. A 32-bit “magic” number marks the presence of a hidden message.

Fig. 5. Adding an encrypted portion with a hidden message to a regular SSH packet
at the beginning of the encrypted payload.

To be able to intercept SSH traffic, we implemented a Packet Transmogrifier1

(PT), written in C for Linux 2.4 kernels. The PT is a piece of software that
captures arbitrary packets in transit, embeds secret messages into a stream of
outgoing packets, and correspondingly extracts the hidden message when used
downstream. It was implemented as a kernel module for deployment in Linux-
based routers. In principle, the PT uses a combination of several individual
protocol-specific packet transformers as plug-in modules (each of which could
be used by an individual application to embed a message in a data stream).
This approach gives us the flexibility of embedding hidden messages in packets
of multiples types corresponding to different protocols, and with a variety of
sources and destinations. The current implementation of the PT provides a series
of default protocol-dependent embedder and extractor functions that are called
based on the options selected by the user and the payload type of a particular
IP packet. The corresponding functions for handling SSH packets are called
sshEmbedder and sshExtractor.

When establishing an SSH session, the client and the server negotiate the al-
gorithms to be used in the session, the MAC algorithm among them. Next, they
1 With appropriate apologies and thanks to Bill Watterson, creator of “Calvin and

Hobbes” [36].



initiate the key exchange. The number of messages exchanged till this point by
the client and server are unencrypted, therefore, sshEmbedder and sshExtractor

are not interested in modifying such packets. The analyze their content and
discharge them if they are any of the plain-text packets. Once the key ex-
change is done, both sides, client and server, turn on encryption, perform au-
thentication, and the secure connection is establish. From that particular stage,
sshEmbedder begins altering the SSH packets, embedding encrypted hidden mes-
sages. Conversely, sshExtractor attempts to extract a secret message from every
encrypted packet and reformats the SSH packet to its original form. The func-
tions sshEmbedder and sshExtractor are semantics preserving. The SSH traffic
reminds encrypted after embedding or extraction, hence both the cover and the
stegomessage have the same semantic meaning to a third party observer.

From monitoring SSH traffic, we learned that the most common packet sizes
in Telnet-like SSH session are 48 and 80 bytes, with each comprising approxi-
mately 23% of the recorded data. For testing the functionality of this implemen-
tation, we elected to embed data in chunks of at least 12 octets with a 32-bit
(4-octet) CRC to verify the integrity of the message when transmitted. That is,
the total length of the SSH payload is incremented by at least 16 octets after the
embedding. Hence, a portion of the SSH packets with payload length 48 bytes
are converted into 64-octet packets. Similarly, a portion of the SSH packets with
payload length between 49 and 64 are transformed into 80-octet packets. Figure
6 shows a sample output of the PT when embedding messages.

Fig. 6. Sample Output of the Packet Transmogrifier when Embedding Information in
SSH Traffic where a 48-byte payload is enlarged to a 64-byte payload.

If Eve is able to observe both sides of the communication at the location
where the PT is placed, it would be trivial to notice the difference in the pay-
load size. The scenario is nevertheless implausible because of the high volume
traffic on the Internet and the multitude of potential insertion points along
the communication path, which make packet-by-packet comparison impractical.



Still, to avoid detection through automated tools when increasing the payload
length of the packets, we need to simulate the packet length distribution of the
SSH payload at any given time. We are currently adding capability to fit a given
payload length distribution within a one-minute interval using the Chi-square
test for goodness of fit. Therefore, we conclude that this stegomethod is not
reasonably secure when Eve has knowledge of the covermessage payload length
distribution.

6 Conclusions and Lessons Learned

In this paper, we have described semantics-preserving application-layer protocol
steganography, and have presented methods for embedding secret messages in
an application-layer protocol. We have developed the notions of syntax and se-
mantics preservation in accordance to the goal of achieving a reasonably secure
and robust stegosystem. We raised issues that evidence the need for definition
of new theoretical paradigms of security. They must involve not only fitting the
statistical profile of the cover itself but also fitting the statistical profile of how
the transmission of the covers. Our approach has several advantages over prior
work:

– Because of its applicability to a wide range of protocols, we can theoretically
embed messages in the vast majority of network traffic on the Internet.

– The use of non-source stego (en route embeddings and extractions) increases
the available bandwidth and complicates traffic analysis because of the abi-
lity to choose traffic from a variety of senders and receivers.

– Semantics preservation dramatically increases the practical ability of pro-
ducing secure and robust stegomethods in network protocols.

As a proof-of-concept, we implemented an end-to-end protocol steganography
approach in the SSH2 protocol as well as one with agents as middlemen. The
SSH approach is not general, but represents a step toward finding generalized
methods of embedding which is the ultimate goal of protocol steganography. The
packet transmogrifier is a valuable contribution from the SSH implementations.
It allows us to perform on-the-fly message embedding and extraction while a
packet of arbitrary network traffic is en route. The software may be obtained
from the authors upon request. In the near future, we will expand our family of
embedder/extractor functions to include HTTP as well as other protocols.

References

1. Katzenbeisser, S., Petitcolas, F.A.: Information Hiding: Techniques for Steganog-
raphy and Digital Watermarking. Artech House, Norwood, MA (2000)

2. Johnson, N.F., Jajodia, S.: Steganalysis: The investigation of hidden information.
In: Proceedings of the IEEE Information Technology Conference, Syracuse, New
York, USA (1998) 113–116



3. Anderson, R., ed.: Information Hiding: Proceedings of the First International
Workshop. In Anderson, R., ed.: Lecture Notes in Computer Science 1174, Cam-
bridge, U.K., Springer (1996)

4. Aucsmith, D., ed.: Information Hiding: Proceedings of the Second International
Workshop. In Aucsmith, D., ed.: Lecture Notes in Computer Science 1525, Port-
land, Oregon, U.S.A., Springer (1998)

5. Moskowitz, I.S., ed.: Information Hiding: Proceedings of the Fourth International
Workshop. In Moskowitz, I.S., ed.: Lecture Notes in Computer Science 2137, Pitts-
burg, PA, U.S.A., Springer (2001)

6. Oostveen, J., ed.: Information Hiding: Preproceedings of the Fifth International
Workshop, Noordwijkerhout, The Netherlands (2002)

7. Pfitzmann, A., ed.: Information Hiding: Proceedings of the Third International
Workshop. In Pfitzmann, A., ed.: Lecture Notes in Computer Science 1768, Dres-
den, Germany, Springer (1999)

8. Chapin, S.J., Ostermann, S.: Information hiding through semantics-preserving
application-layer protocol steganography. Technical report, Center for Systems
Assurance, Syracuse University (2002)

9. Kemmerer, R.: A practical approach to identify storage and timing channels:
Twenty years later. In: Proceedings of the 18th Annual Computer Security Appli-
cations Conference (ACSAC 2002), San Diego, California (2002) 109–118

10. Dunigan, T.: Internet steganography. Technical report, Oak Ridge National
Laboratory (Contract No. DE-AC05-96OR22464), Oak Ridge, Tennessee (1998)
[ORNL/TM-limited distribution].

11. Handel, T., Sandford, M.: Hiding data in the OSI network model. In Ander-
son, R., ed.: Information Hiding: Proceedings of the First International Workshop,
Cambridge, U.K., Springer (1996) 23–38

12. route@infonexus.com, alhambra@infornexus.com: Article 6. Phrack Maga-
zine, 49 (1996) Retrieved on August 27, 2002 from the World Wide Web:
http://www.phrack.com/phrack/49/P49-06.

13. Rowland, C.H.: Covert channels in the TCP/IP protocol suite. Psionics
Technologies (1996) Retrieved on August 23, 2002 from the World Wide Web:
http://www.psionic.com/papers/whitep03.html.

14. CAIDA.org: Characterization of internet traffic loads, segregated by application
- OC48 analysis (2002) Retrieved on October 15, 2003 from the World Wide
Web: http://www.caida.org/analysis/workload/byapplication/oc48/20020305/
apps perc 20020305/index.xml.

15. Katzenbeisser, S., Petitcolas, F.A.: Defining security in steganographic systems.
In: Electronic Imaging, Photonics West, (SPIE). Volume 4675 of Security and
Watermarking of Multimedia Contents IV. (2002) 50–56

16. Moskowitz, I.S., Longdon, G.E., LiWuChang: A new paradigm hidden in steganog-
raphy. In: Proceedings of the New Security Paradigm Workshop 2000, Cork, Ireland
(2000) 41–50

17. Cachin, C.: An information-theoreic model for steganography. Technical Report
Report 2000/028 (2002) http://www.zurich.ibm.com/ cca/papers/stego.pdf.

18. Anderson, R.J., Petitcolas, F.A.: On the limits of steganography. IEEE Journal of
Selected Areas in Communications 16 (1998) 474–481

19. Mittelholzer, T.: An information-theoretic approach to steganography and wa-
termarking. In Pfitzmann, A., ed.: Information Hiding: Proceedings of the Third
International Workshop. Volume 1768 of Lecture Notes in Computer Science., Dres-
den, Germany, Springer (1999) 1–16



20. Zöllner, J., Federrath, H., Klimant, H., Pfitzmann, A., Piotraschke, R., Westfeld,
A., Wicke, G., Wolf, G.: Modeling the security of steganographic systems. In
Aucsmith, D., ed.: Information Hiding: Proceedings of the Second International
Workshop. Volume 1525 of Lecture Notes in Computer Science., Portland, Oregon,
U.S.A., Springer (1998) 344–354

21. Ettinger, J.M.: Steganalysis and game equilibria. In Aucsmith, D., ed.: Information
Hiding: Proceedings of the Second International Workshop. Volume 1525 of Lecture
Notes in Computer Science., Portland, Oregon, U.S.A., Springer (1998) 319–328

22. Hopper, N., Langford, J., von Ahn, L.: Provably secure steganography. In Yung,
M., ed.: Advances in Cyptology - CRYPTO 2002: Proceedings of the 22nd Annual
International Cryptology Conference. Volume 2442 of Lecture Notes in Computer
Science., Santa Barbara, California, U.S.A., Springer (2002) 77–92

23. Reyzin, L., Russell, S.: More efficient provably secure steganography. Cryptology
ePrint Archive: Report 2003/093 (2003) http://eprint.iacr.org/2003/093/.

24. Fridrich, J., Goljan, M.: Practical steganalysis of digital images - state of the
art. In: Proceedings of the SPIE Photonics West (Security and Watermarking of
Multimedia Contents IV). Volume 4675., San Jose, California, USA (2002) 1–13

25. Provos, N., Honeyman, P.: Hide and seek: An introduction to steganography. IEEE
Security & Privacy Magazine 1 (2003) 32–44

26. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Proceedings
of CRYPTO ’83, Plenum Press (1984) 51–67

27. Schneier, B.: Applied Cryptography. John Wiley & Sons, Inc (1996)
28. Pfitzmann, B.: Information hiding terminology. In Anderson, R., ed.: Informa-

tion Hiding: Proceedings of the First International Workshop, Cambridge, U.K.,
Springer (1996) 347–349

29. Korn, F., Muthukrishnan, S., Zhu, Y.: Ipsofacto: A visual correlation tool for
aggregate network traffic data. In: Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, San Diego, California, ACM Press
(2003) 677–677 Demonstration Session.

30. Ka0ticSH: Diggin em walls (part 3) - advanced/other techniques for bypassing
firewalls. New Order (2002) Retrieved on August 28, 2002 from the World Wide
Web: http://neworder.box.sk/newsread.php?newsid=3957.

31. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in Inter-
net traffic with active wardens. In Oostveen, J., ed.: Information Hiding: Prepro-
ceedings of the Fifth International Workshop, Noordwijkerhout, The Netherlands,
Springer (2002) 29–46

32. Bowyer, L.: Firewall bypass via protocol steganography. Network Pene-
tration (2002) Retrieved on January 05, 2003 from the World Wide Web:
http://www.networkpenetration.com/protocol steg.html.

33. Bauer, M.: New covert channels in HTTP - adding unwitting web browsers to
anonymity sets. In Samarati, P., Syverson, P., eds.: Proceedings of the 2003 ACM
Workshop on Privacy in the Electronic Society, Washington, DC, USA, ACM Press
(2003) 72–78 ISBN 1-58113-776-1.

34. Secure Shell Working Group, I.E.T.F.I.: The secure shell. Retrieved on Octo-
ber 26, 2003 from the World Wide Web: http://www.ietf.org/html.charters/secsh-
charter.html (2003)

35. Barrett, D.J., Silverman, R.: SSH, The Secure Shell: The Definitive Guide. O’Reilly
(2001)

36. Watterson, B.: Something Under the Bed is Drooling. Andrews and McMeel, pp.
101–104, Kansas City, MO (1988)


