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Résumé

Les canaux cachés utilisent des communications furtives afin de compromettre les
politiques de sécurité des systemes. Ils constituent une menace importante pour la sécurité
puisqu'ils peuvent étre utilisés afin d'exfiltrer des données confidentielles des réseaux. Les
protocoles TCP/IP sont utilisés tous les jours et sont sujets aux problémes des canaux
cachés. Le but de cet article est de donner un apercu des canaux cachés dans les réseaux
TCP/IP. Nous décrivons brievement les protocoles TCP et IP, présentons les différents types
de canaux cachés et les méthodes pour les mettre en place dans les réseaux TCP/IP; nous
étudions ensuite les méthodes existantes pour détecter et éviter les canaux cachés. Les
méthodes statistiques, les réseaux neuronaux, les machines a vecteurs de support et les
normaliseurs de traffic sont présentés. Quelques nouvelles idées sur les techniques de tri de
paquets, de comptage de paquets et d'€vasion des normaliseurs de traffic sont données.

Abstract

Covert channels use stealth communications to compromise the security policies of
systems. They constitute an important security threat since they can be used to exfiltrate
confidential data from networks. TCP/IP protocols are used everyday and are subject to
covert channels problems. The aim of this paper is to give an overview of covert channels in
TCP/IP networks. We briefly describe the TCP and IP protocols, present the different types
of covert channels and the methods to set them up in TCP/IP networks; then we study the
existing methods to detect and avoid covert channels. Statistical methods, neural networks,
support vectors machines and traffic normalizer are presented. Some new insights on packet
sorting techniques, counting covert channels and traffic normalizers evasion are given.

Keywords

Covert channels, TCP, IP, computer security, networking, detection, protection, analysis,
neural networks, support vector machines, traffic normalizers, counting covert channels,
packet sorting.
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Introduction

Networks based on the TCP and IP protocols are, for most of us, part of our everyday life.
We use them for professional and personal needs: to communicate with customers or with
friends, to buy presents, to send money, to retrieve information or cultural goods etc. The
usages are endless and while the security of our computers has increased these last years,
the security of our networks has only slightly been enhanced. Lots of security problems are
still present, especially in enterprise and private networks. Covert channels are not the most
well-known source of risks, and are in fact totally ignored by the public, but they constitute a
real threat.

Several definitions of covert channels exist: a covert channel is “a mechanism that can be
used to transfer information from one user of a system to another using means not intended
for this purpose by the system developers” [Hu95]. [NCSC TCSEC] defines a covert
channel as “any communication channel that can be exploited by a process to transfer
information in a manner that violates the system's security policy”. Covert channels
implementations try to be, or are, stealth.

Covert channels pose a problem for highly secure environments such as government
agencies and military ones. In multilevel security environments where users with high
security levels must not be able to pass information to users with lower security levels,
covert channels can be used to circumvent such policies. In a more classical environment,
covert channels can be used by an attacker to communicate stealthy with a compromised
machine, thus complicating the detection of the attack.

In this paper we give a brief overview of the TCP and IP protocols, then present the
different types of covert channels and methods to set them up in the TCP and IP protocols,
and study the existing methods to detect and avoid covert channels. We finish by seeing how
to avoid and manage the covert channels threat.
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1 Covert channels in TCP/IP

1.1 Presentation of TCP/IP

TCP and IP are old protocols since they were invented in the 70's and were approved by
the Department of Defense (DOD) for the ARPANET in 1982. Now the Internet and most of
current networks still rely on TCP and IP to operate. They are efficient but lack security
features.

TCP/IP are always referred to together because they are in most cases used together, but
they are two different protocols: IP, the Internet Protocol and TCP, the Transmission Control
Protocol. Like most networks, TCP/IP networks are built on a layered architecture. There are
four layers for TCP/IP networks. From the top to the bottom, we have:

Application layer: this layer is used by end user services. For instance HTTP, the
protocol used to access the content of the Web, or POP, the protocol used to retrieve
emails, are encoded in this layer.

Transport layer: this layer handles the flow of information between systems. It
manages connections from a system to another.

Network layer: this layer transmits packets between systems.

Link layer: this layer provides the communication with the network interface. For
instance, on most local networks, the protocol used to send data on the network is
Ethernet.

These layers constitute a “stack” and implementations of TCP/IP are often called TCP/IP
stacks.

TCP is defined in [RFC793] and IPv4, the current version of IP, in [RFC791]. A good
introduction to TCP/IP, a bit outdated, is available in [Ste93]. We do not explain the whole
protocols in this section but only the necessary information to understand the rest of this

paper.

1.1.1 Internet Protocol

IP, the Internet Protocol, uses the network layer. It is an unreliable, connectionless
protocol. This mean that there is no guaranty that an IP packet will not be lost. The protocol
does not maintain any state or information between the successively emitted packets. How
can we have reliable communications if IP is unreliable ? TCP is the answer: it uses IP and

Pierre Allix, Covert channels analysis in TCP/IP networks, 2007 8/34



is designed to be reliable. The only role of IP is to transmit packets from a machine to
another. A packet is just a piece of data, associated with metadata. These metadata indicate
where the data should be transmitted, from where they come etc. The metadata section of a
packet is called a header.

The IP header is represented coloured in the following figure:

0 7 15 31
Version IHL TOS/DiffServ/ECN Total length
Identification Flags Fragment Offset
Time To Live Protocol Header Checksum

Source address

Destination address

Options (optional)

Data

The "::' symbol indicates that the field can be larger than 32 bits. The IP header, without
options, has a length of 20 bytes.

The version field indicates the version of the protocol used. The current version of IP is
the version 4, so this field will have the value 4.

The IHL (Internet Header Length) field indicates the number of 32 bit words in the
header, with the options.

The Type Of Service (TOS) field is now used for Quality of Service (QoS with DiffServ)
to distinct priority data from the other, for instance for Voice over IP. It can also be used for
congestion management (ECN extension).

The Total length field indicates the total size of the packet in bytes.

The Identification field is used for fragmentation. MTU (Maximum Transfer Unit) is the
maximum size for a packet that a device accepts. When a packet is bigger than the MTU it
has to be fragmented into several smaller packets. Each one contains an identification field
that is used by the receiver to reassemble the original packet, each fragmented packet of the
same original packet having the same identification number.

The Flags field contains three flags, each coded with a bit:

- The first one is reserved and must be set to zero.
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The second one, DF (Do not fragment), indicates that a packet should not be
fragmented. A packet that has to be fragmented and that has the DF flag set is
discarded.

The third one, MF (More Fragments) is set on each fragment of a fragmented
packet but the last.

The Fragment Offset offset field indicates the offset of a fragment in the original packet,
in 8-byte block unit.

Fragmentation should rarely occur since MTU discovery techniques now exist.

The Time To Live (TTL) is decremented by one each time a packet is forwarded by a hop.
When the TTL is zero, the packet is discarded. This prevents packets from persisting in the
network, for instance if there are some routing problems.

The Protocol field indicates which kind of protocol is used in the data of the packet. 1 is
for ICMP, 6 for TCP, 7 for UDP...

The Checksum field is the checksum of the header. It is used to detect errors during the
transmission of the packet. This checksum is verified at each hop and recomputed because
the TTL field change at each hop too. The data are not part of the checksum, and protocols
of the transport layer may have their own checksum field. The algorithm for the checksum is
simple:

“The checksum field is the 16 bit one's complement of the one's complement sum of all 16
bit words in the header. For purposes of computing the checksum, the value of the checksum
field is zero.” [RFC791]

The Source address field indicates the source address of the machine that emits the
packet.

The Destination address field indicates the address of destination.

The Options is an additional optional field. It can contain information about security,
routing etc. It is rarely used. The options are always aligned to a 32 bits boundary, padding
is used to maintain this property.

The Data field contains data of the layers above.

1.1.2 Transmission Control Protocol

TCP handles the communication between two machines. It is a reliable protocol. Data
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loss or corruption are detected and the packet is emitted again if necessary.

The following figure describes the TCP header:

Source port Destination port

Sequence Number

Acknowledgement Number

Data Offset Reserved Flags Window

Checksum Urgent pointer

Options (optional)

Data

Source port and destination port are used to identify a connection: the quadruplet (source
port, source address, destination port, destination address) is unique for each connection.

Each protocol has its own port: for instance HTTP servers use the port 80, FTP server the
port 21 etc. When a client makes a connection to a HTTP server, it sends data to the port 80
of the server machine and receives data on some port of its machine.

The Sequence Number (SEQ#) field is used to identify, in the flow of information, which
bytes are being sent. The stream during a connection is seen as a continuous stream of bytes.
SEQ# points to each part of the stream being send.

For instance if 31337 bytes of data have to be sent during a connection, several TCP
segments may be sent on the network. Once the connection is established the first segment
of data will have a sequence number of 1. If 457 bytes of data have been sent, the second
segment will have a SEQ# of 458, etc.

In practice the first sequence number, called the Initial Sequence Number (ISN), is
randomly chosen for each connection for each machine. So in our example the first segment
(not in the connection establishment) will have a sequence number of x + 1, where x is
randomly chosen, the second one x + 458 bytes and so on. There is an offset but since we
know the ISN we can always know which byte is pointed by the SEQ#.

The Acknowledgement Number (ACK#) field indicates which bytes of the stream have
been received. In the previous example, once a machine has sent 457 bytes of data, the
second machine will send a TCP segment with ACK value of 458 (we assume its ISN is 0),
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notifying thus that the 458" and following bytes are awaited.

To hijack a communication between a server and a client, an attacker must guess the
SEQ#s of the server to send packets with valid ACK numbers. If the attacker sends
packets with the source address of the client and valid ACK#, the server will “think™
that the packets really come from the client.

A few years ago, ISN were not randomly, or not randomly enough, chosen.
Attackers could guess the value of the ISN and inject packets in the connection
between the client and the server.

The Data Offset field indicates the number of 32 bit words in the header, options
included.

The reserved field is reserved for the future and is not used.

The flags field is composed of eight bits:
CWR and ECE are used for congestion management.
URG is set to indicate that the Urgent Pointer field is valid.
ACK is set when the ACK# is used.

PSH is set to indicate that the received data should be passed immediately to the
application layer and not be buffered.

RST is set to reset the communication.

SYN is set to initialize a communication and synchronize SYN# and ACK#
between a client and a server. This will be detailed in the next section.

FIN is set to indicate that the sender has no more data to send.

The Window field indicates the number of bytes, starting with the byte specified in the
ACKH#, that the sender is willing to accept.

The Checksum field 1s used for error-checking and is applied to the header and the data.
The same algorithm as IPv4 is used.

The Urgent Pointer field is an offset: added to the beginning of the data it points to the
last byte of the urgent data. It is significant only when URG is set. Urgent data are defined
by the application layer and must be processed quickly. It is rarely used but can be used to
indicate “interrupt” type commands, for example with the old, insecure, Telnet protocol.
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The Options field is optional and can be used for TCP extensions. The options are always
aligned to a 32 bits boundary, padding is used to maintain this property.

A common option is the Maximum Segment Size (MSS) that specify the maximum size
that the sender wants to receive for segments. Two other options are widespread: the
timestamp value (TSV) and the timestamp echo reply value (TSER). TSV contains the value
of the time clock of the machine sending the segment, TSER contains the most recent TSV
value received. Both these options are used for congestion management.

TCP data are transmitted over IP. The encapsulation schema is like this:

IP header TCP header | TCP data
\

What is called a TCP segment is in blue; the IP packet in green. IP is also encapsulated in

another protocol, for instance in a LAN its is commonly over Ethernet.

1.1.3 TCP handshake

Understanding how the TCP connection is established is important to understand the
mechanism of covert channels.

To establish a connection, the client emits a first segment with the SYN flag set and with an
ISN randomly chosen, in our example 42. If the server accepts the connection, it responds
by sending a segment with the SYN and ACK flags set, and an ACK# of ISN + 1. This
follows the acknowledgement mechanism described in the previous section. The segment
contains also the server SEQ# which is randomly chosen, for instance 31337. The client
acknowledges the reception of the segment of the server with a third segment that contains a
SEQ# incremented by one, and an ACK# equal to the server's SEQ# plus one.

This process is illustrated with the following figure. It illustrates the establishment of a
connection between a machine on a local network with IP address 192.168.1.33 and an
Internet HTTP server (www.free.fr). The port of the machine used for the connection is
48666, the port for the server is 80 (that is the port by default for HTTP).
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| Time

0.044

0.082

0.082

[0.082

| 192.168.1.33 | www.free.fr

First segment:

(48666)

Second segment:

(48666)

Third segment:

(48666)

| (48666)

48666 > 80 [SYN] S

GET / HTTP/1.1
------------------ > (80)

TCP: 48666 > 80 [SYN] Seqg=42

TCP: 80 > 48666 [SYN, ACK] Seq=31337 Ack=43

TCP: 48666 > 80 [ACK] Seq=43 Ack=31338

The connection is established, request of the client to get a Web page:

HTTP: GET / HTTP/1.1

The last line is not part of the connection establishment but the first segment containing
the data of the application layer. These data (the string “GET / HTTP/1.1”) ask the server to
send the index page of the web site.
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1.2 Covert channels

Covert channels for the TCP/IP protocols use the IP or TCP header to convey information
in a way that does not disturb existing communication. Covert channels are dangerous
because they can be easily implemented, are largely ignored, and can be hard to detect.
Moreover, most network administrators or persons in charge of the network security do not
try to detect potential covert channels.

Covert channels are sometimes classified into storage covert channels, that use existing
data to encode information, and timing covert channels that use the delay of emission
between packets to encode data, or any modulation of the available resources.

Covert channels can be active or passive. A passive covert channel use existing
communications to transfer information while an active one create packets or
communications.

Steganographic techniques that hide data in the payload of the packet are not considered
in this paper. They depend on the application protocol used and are not particular to TCP/IP.

1.2.1 Scenarios

We consider two scenarios in this document. In both scenarios communications occur
between a client machine A and a server machine B.

In the first scenario an attacker has the control of the machines A and B and sets up a
covert channel between them.

In the second scenario an attacker has the control of the machine A, and of another
machine C. The machine A communicates with a non compromised machine B and the
attacker uses a covert channel between A and B, to indirectly transfer data to the machine C.
The machine C is able to examine the network traffic between A and B.

To examine the traffic, the machine C has to be on the path between A and B, or
on a wireless network, or a LAN with a hub, or a LAN hijacked with an ARP
spoofing attack... The electronic resonance of devices can even be used with a
TEMPEST-like system to get the content of the communications between A and
B!

A third scenario is introduced later. These scenarios are just used to illustrate the use of
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covert channels, other scenarios can be considered.
1.2.2 Covert channels in IPv4

1.2.2.1 Storage covert channels

TCP/IP implementations follow a robustness principle: “be conservative in what you do,
be liberal in what you accept from others* [RFC793]. Invalid packets regarding to the norm
can be accepted when they can be meaningfully interpreted. This lead to redundancies:
several different packets can be interpreted the same way. This can be used to code
information.

For instance an attacker knows that his packets will not be fragmented if theirs sizes are
inferior to the MTU. The DF (Do not Fragment) flag can be set or not, this will not affect
the communication. The attacker can set a up a covert channel with this protocol: DF set
codes a one, DF not set a zero. This is applied in [Ash02]. Other flags can also be used,
according to what the server and intermediate hops accept.

A lot of fields in the IP header can be used to convey information. The most obvious
technique, described in [Row96], is to hide information in the identification field. This field
is rarely used and should be set to zero when not used. However TCP/IP stacks follow the
robustness principle and non fragmented packets with non zero identification fields can be
accepted. This allows an attacker to encode 16 bits of data with each packet. Since a lot of
packets are usually sent over a network, the amount of data transmitted with such a covert
channel can be huge. This technique can be used in conjunction with the previous one.
Identification field can also encode data when fragmentation is done.

Fragment offset field can also be used when there is no fragmentation. In a more general
way, if no fragmentation is needed during the connection, the attacker can voluntarily
fragment a packet to code a one, and doing no fragmentation to code a zero.

Some covert channels are more stealth than others. For instance a channel in
the fragment offset field can be easily detected since this field is usually set to
zero when there is no fragments. The furtiveness of covert channels and
methods to detect them will be study in section three.

The TTL field can be used: a high TTL value will encode a one, a low value TTL a zero.
Since TTL can encode up to 255 values and that most path between machines in the Internet
are largely inferior to 40, an attacker can, for instance, send packets with an initial TTL high
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value of 255 (encodes one), and an initial low value of 142 (encodes 0). If there are 20 hops
between A and B, B will receive packets with a TTL of 235 or 122, encoding ones or zeros.
[ZaArBr06] used such a technique. A v value can also be chosen, the high TTL value will be
v+1 and the low TTL value will be v-1. This is the same schema but less detectable and less
reliable.

A more original technique is to use the Header Checksum field. The technique is
described in [Aba(O1] and [AbaO5]. It uses collisions in the hash algorithm of IP and TCP to
create a valid hash that contains information for any packet.

The Source address and destination address fields are also usable. A packet with a fake
source address can encode data, as well as a packet with a fake source destination. In the
second case the attacker must sniff the network to retrieve the content of the packet.

A sniffer monitors network data. To sniff means to run a sniffer software to
get what is send and received on a network. Sniffers can also be hardware
devices.

Data can also be stored into the options field of the header, with non-existent options.
Valid options can also be used but with non-zero padding that encodes data.

The data field itself can store covert channel data when the RST flag is set.

Data can also be added at the end of the data field. In scenario two the additional data is
unexpected by the server and must be removed before reaching it.

1.2.2.2 Timing covert channels

Timing covert channels use a smart way to encode information: instead of using the
different field of the IP header, they use the emission time between packets. IP timing
channels are described in [CaBrSh04].

A time interval can be defined: if a packet is sent during the interval, this codes a one, if
no packet is sent this codes a zero.

Timing covert channels can also be simply implemented in IP with a binary code. An
attacker can module the delay of emission between packets: a short delay between two
packets codes a one, a long delay between two packets codes a zero. Non binary codes can
also be implemented.
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This kind of channel is not reliable since during the communication a hop can
delay a packet. Error-correcting codes or CRC in the covert channel can be used to
add reliability.

Another method is possible. If an attacker has the control of two machines A and B, each
one having a connection to the same server C, the order of the data sent by each can be used
as a covert channel. For instance if the machine A sends a packet and then the machine B
sends two, this can be interpreted like a 0. If the machine A send two packets and then the
machine B one, this can be interpreted like a 1. Complex codes can be established.

Counting covert channels are introduced, outside the scope of TCP/IP, in [Gra94].
Counting covert channels use the number of events to convey information. No papers on
counting channels and TCP/IP were found in the literature.

The most obvious counting covert channel that we can imagine sets up a binary code. An
arbitrary number A is chosen. During a connection if the number of transferred data is
inferior to A, this codes a zero, if the number of transferred data is superior or equal to A,
this codes a one.

1.2.3 Covert channels in IPsec

Let us introduce a third scenario: machine A and machine B are not compromised,
machine C and D are controlled by an attacker and have access to the traffic between A and
B and can modify or inject new packets in the network. The communications between A and
B is modified to set up a covert channel, allowing C and D to communicate.

What happens if we add cryptography to the communications between A and B ? If in the
first and second scenario, the attacker has the control of the machine A and so we must
assume that he can hijack the cryptographic process and modify the IP headers before they
are encrypted. In the third scenario this is still possible but more complex: the covert
channels must be removed before the packet reaches its destination, otherwise the digital
signature verification will fail. Storage covert channels would not be possible. Timing covert
channels would always be possible: the attacker can capture, delay and transfer packets to
modulate the time between packets. Adding cryptography to the communications reduces
the risk of covert channels but does not remove it completely.

IPsec adds authentication and encryption to IP packets and can be used with IPv4. IPsec
adds a new potential covert channel described in [Ash02]. In this thesis, the order of IP
packets are used to convey information. With n packets we have n! different ways for
ordering them and sending them on the network. This can be used to establish a code, each
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different order for a set of packets encodes a value. We give an example with three packets
d1, d2 and d3:

Order Corresponding coded value
dl d2 d3 1
dl d3 d2 2
d2 dl1 d3 3
d2 d3 dl 4
d3 d1 d2 5
d3 d2 dl 6

In this example, the attacker receives three packets dx, dy, dz. To discover which value is
coded, the original order of the three packets must be known. The Ipsec header has a field
that can be used to identify the original order of packets: the sequence number field which is
incremented by one with each packet.

The author of [Ash02] writes that the technique is not applicable to TCP. Indeed
it is: since TCP sequence number are also strictly increasing (modulo 32 bits), the
receiver knows the original order of packets. Packet sorting can be applied to
IPv4, based on the content of the sequence number of the TCP header contained
in each IP packet, to establish a covert channel.

1.2.4 Covert channels in IPv6

IPv6 [RFC2460] is the successor of IPv4. The protocol is not really spread today, with
some exceptions like Japan, but the transition is slowly in progress. IPv4 has to be replaced
because the number of IPv4 addresses being attributed is pushing the limits of the total
number of IPv4 address available. An IPv4 address is coded with 32 bits, while an IPv6
address is coded with 128 bits, thus allowing more addresses to be attributed. Moreover
IPv6 adds new features, like auto-configuration of addresses, and improves the security.

This figure describes the structure of the IPv6 header:
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Version Traffic Class Flow label

Payload Length Next Header Hop Limit

Source Address (128 bits)

Destination Address (128 bits)

Data

The Version field indicates the protocol version, i.e 6.

The Traffic Class field can be used to identify different classes or priorities. It is the
equivalent to the Type Of Service field of IPv4.

The Flow label field can be used to QoS (Quality of Service) management. The field is
ignored by devices that do not support it.

Payload Length indicates the length of the packet after the header. Extensions headers are
part of the header. Extensions headers are additional headers added after the IPv6 header.

The Next Header field is equivalent to the Protocol field of IPv4: it indicates the type of
header following the IPv6 header.

The Hop Limit field is equivalent to the 7TL field of the IPv4 protocol.

Source Address and Destination Address field indicate respectively the source address
and the destination address for the packet.

1.2.4.1 Storage covert channels
A real good work has been done in [LuLeCh06] to identify covert channels in IPv6.

The Traffic Class field can be used to store data but perturbations can occur if the
attacker does not control all the communication path because the value is used by nodes to
process the packet.

A fake flow label can be created to encode data.

Extra data can be appended at the end of the packet if the payload length is modified.
This technique is not really a covert channel, as covert channels data use the protocol's
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expected place to store data.

Since nodes do not process extensions headers, an extension header can be created to
store data. This requires modifying the next header and payload length field.

The Hop Limit field can be used as the TTL field of the IPv4 for covert channels.
Source Address and Destination Address can be used as in the IPv4 protocol.

All theses covert channels and more are detailed in [LuLeChO06].

1.2.4.2 Other covert channels

Timing covert channels are as relevant as for [Pv4 and the same techniques can be
applied. Counting covert channels can be used. Packet sorting can also be used since IPsec
1s mandatory for IPv6.

1.2.5 Covert channel in TCP

1.2.5.1 Storage covert channels

We have seen how a TCP connection is established: the SYN flag is set on the first TCP
segment sent by the client. We also have seen the RST (Reset) flag that indicates that a
connection should be reset. It is obvious that a connection will not be reset when being
established, and the RST flag is never set on this first segment. Following the robustness
principle or being lazy in their implementation, several operating systems will accept a
connection demand with a SYN flag set and a RST flag set . Ambiguities in TCP/IP are
described in [Star02]. A client and a server could use this to set up a covert channel: a
connection demand with a SYN flag would encode a zero, and a connection demand with a
SYN and RST flag would encode a one. Other flags can also be used, even outside the
establishment of a connection, depending on what forwarding devices and the server accept.

On most systems, the source port field of a TCP connection is chosen between 1024 and
65535. An attacker can fix the source ports of its connections to different values to encode
data.

The destination port can also be used. If there is no server listening on the port the
connection will just be reset but 32 bits would have been transmitted.

The Initial Sequence Number (ISN) can also be used. This has been successfully applied
with the NUSHU covert channel [RutO4]. NUSHU is a passive covert channel proof of
concept for Linux, that modify the ISN of existing segments to code information.
Information is coded in ISNs and encrypted with DES, thus ISNs appear to be random.
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The reserved field can be used.
The checksum field can be used with the same method as for IPv4.

The urgent pointer is useless when the URG flag is not sent and can thus store 16 bits of
data.

The options field can be used to store data by creating non existent options. We have seen
that the timestamp option is common. The Time Stamp Value (TSV) encodes the timetamp
clock value of the sender. In most case the least significant bits of this field appears random,
and some covert channels [GiGrLiTi02] used these least bits to encode information.

1.2.6 Covert channels in practice

Someone who wants to set up a storage covert channel must craft his own packet headers.
This requires to have administrative privileges. Packets can be crafted with raw sockets or
directly inside the kernel. Timing covert channels must be implemented in the kernel. Most
storage covert channels can be created with few lines of code by an average programmer.

We have seen that a lot of different covert channels exist in TCP/IP. The data usually used
for the protocol itself are used to convey information. Data filtering and data control are thus
more complex to implement. Covert channels can be used to violate a security policy and in
an easy way. Even the most basic covert channel can be dangerous: if it transmits only a few
bytes it will be hard to detect. This dangerous aspect is stressed by the fact that only few
networks use covert channels detection mechanisms or mechanisms to avoid covert
channels. In the next sections we study these mechanisms.
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2 Covert channels detection

2.1 Simple analysis

Several covert channels can be detected using a simple analysis of network packets. Let us
take the example of covert channels that use the Urgent Pointer field when the URG flag
field is not used. TCP stacks implementations set this field to zero when URG is not set.
This kind of covert channels can be easily detected. The same apply to the MF flags and
Fragment Offset field of IPv4 when fragmentation is not used.

Identification field (IPv4) generation is implemented with different algorithms
[MuLe05]. Some systems have a globally increasing counter, others an increasing per-host
counter etc. A covert channel that does not follow these generation schemas will be easily
detectable. Nonetheless this requires to know the systems in the studied network to know
what identification field generation schemas are in use and to compare the identification
fields in the network with the expected values.

Techniques exist to identify the OS type of a remote system. The TCP/IP stack of
each OS is different and each has certain characteristics or anomalies. We can
examine the packets sent by a system, study their characteristics and guess the OS
of the system. Tools exist to do this, passively or not.

Non-existent options in the options field of TCP or IP are also suspicious, as well as a
host sending packet with different TTL values or non-zero padding. Sometimes not all bits
of ISNs are random: the 15" bit of ISNs generated by OpenBSD is null. A covert channel
that ignores these characteristics of TCP/IP stacks can be easily detected.

The reader will find others examples and a captivating discussion about TCP/IP stacks
characteristics in [MuLe05].

2.2 Statistical and likelihood analysis

2.2.1 Storage covert channels

We have so far covered the subject of random fields. In fact most fields that should be
random are not totally random, or are only random on a subset of the space they could
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occupy.

When using fields that should be random, like ISNs, covert channels try to preserve the
randomness to avoid detection. As an example the NUSHU covert channel use DES to have
a certain randomness but generated ISNs do not cover the same space as the one generated
by Linux and can thus be detected.

For the timestamps technique a random test can be done: with a low bandwidth
connection, too much randomness is suspicious.

2.2.2 Timing covert channels

The paper [BeGiCy05b] explores two ways for detecting timing channels with binary
code and with multi-symbols code. The latter assumes that a skillful attacker will try to
maximise the Shannon capacity of the covert channel and try to identify such a behaviour
with probabilities. This assumption is weak: either the attacker is not skillful and he will not
try to maximize the capacity of the channel or the attacker is really skillful, he knows the
technique, and he will intentionally not use it to avoid detection.

The former assumes that the binary code uses only two different delays to code
information. We can draw a graph with the number of packets (Y axis) given the
transmission delay (X axis). If there is a covert channel in the network there will be two
picks on the graph: one corresponding to the delay encoding one, the other to the delay
encoding zero. There will be few packets with others timing values. In contrary, if there is
no covert channel the repartition of packets will be concentrated on one pick and others
timing values will be centred around.

Packet sorting techniques can be easily defeated if enough data is transmitted: too much
entropy in the packets of a network is abnormal.

Detection requires a certain amount of data, thus a covert channel that
exfiltrates just a few bytes to transmit a password or a private key will
likely not be detected.

2.3 Process Query Systems

An overview of Process Query Systems (PQS) is available in [PQS04]. PQS are a new
retrieval information technology where queries are described as process descriptions. Given
a set of events the user can identify with a PQS which processes has generated which events.
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A PQS is composed of four elements:
- astream of observable events.
- aset of models that describes potential processes that can generate the events.

- some tracking algorithms that analyse events to find which processes have generated
them.

- a PQS engine that take the three previous elements in input and give in output the
models likelihoods for the observed events.

Models, which represents dynamical systems, can be represented with different formalisms:
with Hidden Markov Chains, Finite State Machines with hidden states, Hidden Petri
Networks etc. Tracking algorithms rely on Viterbi or Viterbi-like algorithm.

We should emphasize the fact that Process Query Systems have a broad range of
applications. They can been used for instance to analyse social networks and discover terror
cells or business processes, to track fish or humans on videos and, in our case, to monitor
networks.

PQS are used in [BeGiCy05] to detect timing covert channels with binary codes. The
authors indicate that some PQS models can return false positives, that is some processes are
identified as covert channels when they are not. They do not provide enough data to see how
successful their method is with other models but a PSQ system which includes Snort probes,
can be downloaded and tried on their website: http://pgsnet.net.

We should emphasize the fact that using a PQS system for detecting a timing covert
channels with binary code seems excessive.

2.4 Neural networks

Neural networks (NNs) try to imitate the behaviour of our brain. A neural network is
constituted by neurons and connections between them. Input neurons receive information,
called signals, hidden neurons contribute to reasoning and output neurons are used to
retrieve the result of the process. Each connection between two neurons has a weight. A
neuron takes the sum of its inputs, balanced by each weight, applies a function to it and
outputs a corresponding signal. The function can be, for instance, a sigmoid function. This
simple architecture reproduces some aspect of our neurons and is enough to build a system
with some learning capabilities.

Neural networks can be used to approximate functions, and for patterns or sequences
recognition. NN can be trained to recognize a given input, in our case to recognize TCP/IP
characteristics used by covert channels. During the training a set of inputs is transmitted to
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the NN and the weight of the connections are adjusted to match a given output. NNs are
powerful: they can generalize, i.e., give meaningful outputs even if they did not encounter
the inputs during training. A drawback of neural networks is the time needed to train the
network, which can be long.

alpha cosialpha)

Hllustration 1: A simple neural network with an input neuron and an output neuron.
With a sigmoid function for neurons and appropriate weights, this simple network is
able to give a good approximation of the cosinus function.

NN are used in [TuAnOS5] to detect NUSHU. Several NN are first trained to recognize
TCP ISNs generated by NUSHU on an example set of TCP segments. Once the training is
done, real segments are transmitted and the NNs try to identify the segments of the covert
channel. ISNs generated by NUSHU do not covert the same space as a classic Linux TCP/IP
stack; that is why the NNs can differentiate between ISNs generated by NUSHU and others.
The NN is recurrent, thus taking into account ISNs already seen to interpret the ISN being
analyzed.

The best NN has a false channel detection rate inferior to 0.1%. The accuracy of results
begins to be good for fifty ISNs examined or more.

NN are not limited to the detection of a particular type of covert channels and could be
used to detect a lot of covert channels but a simple or statistical analysis is often enough.
Drawbacks are the time needed to train the networks, the difficulty to find the optimal
number of neurons, and the existence of false positives.

2.5 Support vector machines

Support vector machines (SVM) are, in a sense, similar to NNs. They are learning
machines used to identify patterns but instead of trying to imitate the brain like NNs they
use mathematical and optimization techniques. The term “machine” should not confuse the
reader: a SVM is not physical but just a mathematical concept. Like NNs support vector
machines need to be trained before doing classifications. Support vector machines do
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classification on vectors.

Let us take a really simple example to illustrate support vector machines. In the following
figure red and blue vectors of two dimensions are represented:

Hlustration 2: Two classes of vectors of
dimension 2.

We want to classify blue and red vectors. In this case they are not linearly separable. A
SVM considers the problem in the higher dimension, and finds an hyperplane to separate
the vectors. The same principle apply to vectors of dimension n. The classification problem
1s seen as a quadratic optimization problem by the vector machine.

[SoSeMo03] demonstrates the use of support vector machines to identify covert channels.
The authors try to identify two types of covert channels: covert channels that use the
identification field of IPv4 and the ones that use the ISN field without encryption. Both
techniques just encode ASCII values into the ISN with simple transformations that generate
a more realistic number.

The authors propose a detection method based on the time relation between the packets
and the modified field in packets. This is a similar approach to the NNs seen in the section
before that use packets already seen in addition to packets being seen to identify a covert
channel. The training of the SVM is done on 10 000 packets. Results on the test sets are
good, with a detection rate approaching the 99%. It is not a surprise: the covert channels
used for the test are not really stealth and could be identified with simple or statistical
(randomness) analysis.

2.6 Undetectable covert channels

A major work in the field of covert channels is the work done in [MuLe05]. The authors
study the algorithms used to generate ISNs in OpenBSD and Linux. OpenBSD uses RC4 to
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assure randomness of ISNs while Linux uses MD4. The authors use this cryptographic
algorithms to encode the data of their covert channels in the ISNs and encode them in a way
identical to ISNs generated by OpenBSD or Linux. Thus the ISNs generated by the covert
channels cover the same space as the ones generated by a system without covert channels.
There is no public implementation of the algorithms but a correct implementation can create
a covert channel totally undetectable and with a content that can be only be read with the
private key. The only drawback with such a covert channel is that the covert channel has a

very low bandwidth: only a few bits per connection.
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3 Avoiding covert channels

We have seen the existing methods to detect covert channels. These methods should be
used as much as possible to discover covert channels in networks. In addition techniques to
avoid certain covert channels can be used. In this section we consider techniques with traffic
normalizers and how to secure machines to avoid covert channels.

3.1 Traffic normalizers

A traffic normalizer filters and modifies the traffic between machines, and thus making
the elaboration of covert channels more complex. Traffic normalizers are presented in
[HaPaOl] and in [FiFiPaNeO3] with the name of ‘“‘active wardens”. In both cases the aim is
to remove the ambiguities in the protocol and to make some modifications to counter covert
channels.

Part of the work consists of enforcing the TCP and IP norms: fields that should be to
zero, like reserved flags or urgent pointers when the URG flag is not set, are set to zero by
the normalizer. All ambiguities that can be suppressed without breaking the semantics are
suppressed. Illegal packets, for instance packets with an invalid source address, can be
rejected.

The other part of the work is a deeper modification of the headers to avoid covert
channels. IP identification fields are set to zero when there is no fragmentation. When there
is fragmentation the IP identification of fragments are changed and randomized.

The problem with covert channels that use ISNs is more complex. [FiFiPaNe03] proposes
to add an offset to the ISNs. Clearly this will change the message received. But the sequence
number field is only 32 bits: we can put a marker in the covert message and brute force the
received message with different offsets to retrieve the original marker. We then obtain the
offset used by the normalizer and we can retrieve the original message in its whole.

For timing covert channels, random delays can be added on each hops in the path. The
covert channel will be less reliable.

Normalizers can be used in conjunction with detection mechanisms: the detection
mechanism can discover that a covert channel exists, while the normalizer reduces the
possibility of data exfiltration. Of course, packets for the detection must be captured before
the normalization. If the covert channel's communication is bidirectional a normalizer can
break it, making its detection more complex. Using normalizers, detection mechanisms, or
both depends on the security policy and on what is more important: data protection or
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intrusion detection.

In practice traffic normalizer tools are almost non-existent but they could be implemented
as part of firewalls or routers.

3.2 Security of machines

When legitimate users do not try to set up covert channels themselves, covert channels are
due to an attacker trying to communicate with a compromised machine. Increasing the
security of machines reduces the risk of covert channels since covert channels typically
require administrative privileges.

The security of machines is a too broad subject to be addressed exhaustively in this paper
but we give a minimal list of hints to apply to reduce the risk of attacks leading to covert
channels and data exfiltration.

- Anti-virus, anti-rootkits, and firewalls are a minimum for workstations.

+  Only digitally signed software and software from trusted sources must be
executed.

- Cryptography can be used to encrypt important data and restrict their exfiltration.
- Systems and software must be kept up to date.

- Software that makes stack overflows and heap overflows harder to exploit must be
used.

«  Host intrusion detection system (HIDS) and host integrity checkers must be used.
- Users must be made aware of security concerns.

- Physical access to machines and to the network must be restricted to authorized

users.
+ A security policy must be set and enforced.

This list is endless but applying these advices is already a good step to secure machines.
An important step to secure machines is to apply the principle of least privilege. Each
application, operating system service, and user must only have access to what it needs to
perform its work. Applications must be contained so that a compromised application can not
put at risk on other applications or the system itself.

Modern operating systems such as Linux with SELinux activated, or to a far lesser extent
Windows Vista, possess such containment features.
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3.3 Lowering the potential of covert channels

As we have seen, detecting covert channels is not always possible. Detecting and stopping
covert channels before data exfiltration is even harder since we need exfiltrated data of the
covert channel to detect it: we can only stop the communication once some data have been
exfiltrated. This last assumption holds when the first IP packet is not enough to detect the
covert channel. If a covert channel can be detected with only one packet, we can delay the
establishment of the communication to examine the packet, and block the communication if
its a malicious one.

Moreover, few applications exist to detect covert channels and most enterprises do not try
to identify if there is a covert channel or not in their network. Setting up good security
measures on machines to avoid covert channels can help but as we all know, a skilled
attacker can always find a new and unpatched vulnerability.

With these facts in mind we can assert that totally stopping covert channels is impossible.
If covert channels can not be stopped, we need to decrease their malicious potentials,
especially in an environment with strong security requirements. The most effective method
is to reduce the bandwidth or to close the channel. For instance enterprise LANs can be
closed outside working hours. General advice for dealing with covert channels can be found
in [Hu95].
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Conclusion

We have presented the TCP and IP protocols and the covert channels techniques related to
it. The IPv6 protocol, which will replace 1Pv4, is also vulnerable to covert channels.

Simple detection methods have been studied as well as complex detection methods like
PQS, NNs and SVM. Complex methods can have good detection rates but they require
training and are subject to false positives. There are other techniques that do not require
learning techniques to detect covert channels. Simple behaviour analysis or statistical
analysis can detect most of the covert channels. Despite that, few applications implement
covert channel detection. It is not a common practice in enterprise networks, due to a lack of
knowledge and a lack of standard detection solutions. There is also a lack of tools for traffic
normalization, which prevent from several covert channels.

Covert channels that transmit only a few bytes can be hard to detect and a technique exists
to set up a totally undetectable covert channel. The possibility of an undetectable covert
channel reminds us of the real threat of covert channels. We have seen that improving
security of machines reduces the covert channels risk and we must always keep in mind that
covert channels should been seen in the context of security as a whole to minimize their
risks.

Pierre Allix, Covert channels analysis in TCP/IP networks, 2007 32/34



Bibliography
[AbaO1] C. Abad, IP Checksum Covert Channels and Selected Hash Collision, 2003

[Aba05] C. Abad, Internet Checksum Covert Channels, http://www.the-
mathclub.net/index.php/Internet_Checksum_Covert_Channels

[Ash02] Kamran Ahsan, Covert Channel Analysis and Data Hiding in TCP/IP, 2002

[BeGiCy05] Vincent Berk, Annarita Giani, George Cybenko, Covert Channel Detection
Using Process Query Systems, 2005

[BeGiCy05b] Vincent Berk, Annarita Giani, George Cybenko, Detection of Covert Channel
Encoding in Network Packet Delays, 2005

[CaBrSho04] Serdar Cabuk, Carla E. Brodley, and Clay Shields, IP Covert Timing
Channels: Design and Detection, 2004

[FiFiPaNe03] Gina Fisk, Mike Fisk, Christos Papadopoulos, and Josh Neil, Eliminating
Steganography in Internet Traffic with Active Wardens, 2003

[GiGrLiTi02] John Giffin, Rachel Greenstadt, Peter Litwack, Richard Tibbetts, Covert
Messaging Through TCP Timestamps, 2002

[Gra94] James W. Gray, Countermeasures and Tradeoffs for a Class of Covert Timing
Channels, 1994

[HaPa01] Mark Handley and Vern Paxson, Network Intrusion Detection: Evasion, Traffic
Normalization, and End-to-End Protocol Semantics, 2001

[Hu95] McHugh, J., Naval Research Laboratory, Handbook for the Computer Security
Certification of Trusted Systems, 1995

[LuLeCh06] Norka B. Lucena, Grzegorz Lewandowski, and Steve J. Chapin, Covert
Channels in IPv6, 2006

[MuLe05] Steven J. Murdoch and Stephen Lewis, Embedding Covert Channels into
TCP/IP,

[NCSC TCSEC] National Computer Security Center, Department of Defense Trusted
Computer, System Evaluation Criteria, DoD 5200.28-STD, 1985

[PQS04] George Cybenko, Vincent Berk, Valentino Crespi, Robert S. Gray, Guofei Jiang,

Pierre Allix, Covert channels analysis in TCP/IP networks, 2007 33/34



An Overview of Process Query Systems, 2004

[RFC2460] 1998, Internet Protocol, Version 6 (IPv6), http://www.ietf.org/rfc/rfc2460.txt
[RFC791] RFC 791, Internet Protocol, http://tools.ietf.org/html/rfc791

[RFC793] RFC 793, Transmission Control Protocol, http://tools.ietf.org/html/rfc793

[Row96] C. H. Rowland, Covert channels in the TCP/IP protocol suite,
http://www.firstmonday.org/issues/issue2_5S/rowland/

[Rut04] Joanna Rutkowska, The implementation of passive covert channels in the Linux
kernel, 2004

[SoSeMo03] Taeshik Sohn, JungTaek Seo, and Jongsub Moon, A Study on the Covert
Channel Detection of TCP/IP Header Using Support Vector Machine, 2003

[Star02] P. Starzetz, Ambiguities in TCP/IP, http://gray-
world.net/papers/ambiguitiesintcpip.txt

[Ste93] W. Richard Stevens, TCP/IP Illustrated, Volume 1, 1993

[TuAnOS] Eugene Tumoian, Maxim Anikeev, Detecting NUSHU Covert Channels Using
Neural Networks, 2005

[ZaArBr06] Sebastian Zander, Grenville Armitage, Philip Branch, Covert Channels in the
IP Time To Live Field, 2006

Pierre Allix, Covert channels analysis in TCP/IP networks, 2007 34/34



	1Covert channels in TCP/IP
	1.1Presentation of TCP/IP
	1.1.1Internet Protocol
	1.1.2Transmission Control Protocol
	1.1.3TCP handshake

	1.2Covert channels
	1.2.1Scenarios
	1.2.2Covert channels in IPv4
	1.2.2.1Storage covert channels
	1.2.2.2Timing covert channels

	1.2.3Covert channels in IPsec
	1.2.4Covert channels in IPv6
	1.2.4.1Storage covert channels
	1.2.4.2Other covert channels

	1.2.5Covert channel in TCP
	1.2.5.1Storage covert channels

	1.2.6Covert channels in practice


	2Covert channels detection
	2.1Simple analysis
	2.2Statistical and likelihood analysis
	2.2.1Storage covert channels
	2.2.2Timing covert channels

	2.3Process Query Systems
	2.4Neural networks
	2.5Support vector machines
	2.6Undetectable covert channels

	3Avoiding covert channels
	3.1Traffic normalizers
	3.2Security of machines
	3.3Lowering the potential of covert channels


