
Detection of Covert Channel Encoding in Network Packet Delays
Department of Computer Science - Dartmouth College

Technical Report TR536, Revision 1

August 2005, revised November 2005

Vincent Berk, Annarita Giani, George Cybenko
Thayer School of Engineering

Dartmouth College
Hanover, NH

{vberk, agiani, gvc}@dartmouth.edu

Abstract

Covert channels are mechanisms for communicating in-
formation in ways that are difficult to detect. Data
exfiltration can be an indication that a computer has
been compromised by an attacker even when other in-
trusion detection schemes have failed to detect a suc-
cessful attack. Covert timing channels use packet inter-
arrival times, not header or payload embedded informa-
tion, to encode covert messages. This paper investigates
the channel capacity of Internet-based timing channels
and proposes a methodology for detecting covert timing
channels based on how close a source comes to achiev-
ing that channel capacity. A statistical approach is then
used for the special case of binary codes.

1 Introduction

Modern network defense and host intrusion detection
technologies are forcing computer hackers to be more
creative and subtle in devising and applying attacks. Ac-
cordingly, there is growing interest in not only preventing
attacks but in detecting compromised machines after the
fact. In a situation where an attacker has successfully
compromised a protected host, the question of stopping
the attack is moot and the problem shifts to collecting
evidence that the attack was successful. If the goal of
the attack is stealing or otherwise exfiltrating informa-
tion from the compromised machine or network, some
communication mechanism must be used to get the in-
formation out. In such a case, the intrusion can, in prin-
ciple, be detected by identifying a channel that is being
used to exfiltrate information.

Assuming the network is heavily guarded with Intru-
sion Detection Systems, Packet Anomaly Detection Sys-
tems, and firewalls, the intruder has limited options for

This revision differs from the original only in the correction of one
reference.

getting the data out. The easiest way is the use of a nor-
mal communication protocol, such as FTP (File Transfer
Protocol), to exfiltrate the data. This can be detected in
log-files and traffic dumps, especially if the communi-
cations are with machines that are not part of the normal
traffic. Running a similar communication on uncommon,
high port numbers would likely trigger Packet Anomaly
Detection Systems, because such communications are
highly unusual. Encoding data in the unused fields of
packet headers is likely to set off most modern intrusion
detection systems, as will adding data to the payload sec-
tion of PING 1 packets. Additionally, transmitting data
through a PING payload might trigger Packet Anomaly
Detection Systems when the size of the Ping packets is
increased and/or irregular. The attacker thus will have to
look for more covert ways of moving the data out of the
compromised network.

The data exfiltration mechanism under investigation in
this paper is the use of inter-packet delay times to en-
code data. This means that the intruder does not nec-
essarily have to create new traffic - he/she merely mod-
ulates the time between packets of regular communica-
tions to encode the data. The extent to which existing
traffic streams can be used to create a timing channel de-
pends on the location of the recipient. The intruder will
need access to the communication stream to measure the
packet inter-arrival times and retrieve the data. In this
paper we propose a method for investigating inter-packet
delays at the border of a protected network. Based on
a sequence of delay times, our algorithm decides if the
sequence of packets is a potential covert communication
channel or not.

We propose two methods for detecting inter-packet
timing delay covert channels. The first one is based
on the idea that a skillful attacker tries to exfiltrate the
data at maximum bandwidth as limited by the channel

1Packet Internet Groper. A utility that forwards data packets to
check the quality of a link or verify the connection of a machine to
the Internet.

capacity. The probability distribution of interpacket de-
lays that achieves the highest capacity is computed and
compared with the real distribution of the input symbols
observed in the network. The class of possible detec-
tion algorithms based on this method is extensive and
we give only one example. The general approach, how-
ever, is very promising. The second technique, applica-
ble to the case of a binary code, simply tries to identify
two concentrations of inter-packet delay times. These
two concentrations should be sufficiently differentiable,
when the delays encode a binary bitstream. Extension
to the case of a highest even number of input symbol is
straightforward.

The remainder of the paper is organized as follows.
Section 2 defines the scenario and introduces some back-
ground. Section 3 presents an input symbols analysis.
Section 4 introduces Information Theory ideas directly
applicable to the case of multiple input symbols. Section
5 focuses on binary covert channels. Conclusions and
ideas for future research are provided in Section 6.

2 Covert Channels: definition and back-
ground

The first definition of covert channel was given in [9].
The paper explores the problem of confining a program
during its execution so that it cannot transmit information
to any other program except its caller. Channels were
classified into three categories, Storage, Legitimate and
Covert. Latter are those used for information transmis-
sion even though they are neither designed nor intended
to transfer information at all.

Ten years later covert channels are defined as those
that use entities not normally viewed as data objects,
but that can be manipulated maliciously to transfer in-
formation from one subject to another [7]. The author
examines the connection between covert channels and
resource allocation policies. The same author in [8]
presents a more general methodology for discovering and
dealing with this type of covert communication.

The main characteristic of a covert channel is the aim
to hide the fact that a transmission is taking place. Com-
pare this with cryptography where the goal is to trans-
fer data readable only by the receiver. In cryptography
there is no intention to camouflage the communication.
A covert channels may encrypt the data sent through it,
but it mainly seeks to disguise its transmission.

Steganography is the oldest form of covert channel.
It is the act of embedding a secret message within a
larger message so that others cannot discern the presence
or contents of the secret message. In the cyber world,
steganography specifically means hiding information in
text or multimedia files (like image or video files) in a

way that is unnoticeable by an average user. Only special
expertise and tools may lead to its detection. Statistical
analysis is one way to detect this type of steganography.

Since security analysts first started thinking about
covert channel communication, two terms have been in-
troduced,Covert Storage ChannelsandTiming Covert
Channels. Covert Storage Channels involve the writ-
ing to a storage location by one process and the read-
ing of the storage location by another process. The stor-
age resource [such as unused bits in a packet header or
the padding fields in a data-gram] is shared between the
two subjects. In a way steganography can be seen as
a form of storage channel. With Timing Covert Chan-
nels the sender transmits data to the receiver by mod-
ulating its use of system resources in such a way that
the manipulation affects the response time observed by
the receiver [6]. Specifically, this can be done by mod-
ulating the wait time between packet transmissions (the
inter-packet delays). This latter type is the focus of our
research.

In our investigation, a covert communication between
two machines consists in sending and receiving data by-
passing the usual intrusion detection techniques. This
subtle mechanism in fact uses only normal traffic, ex-
ploiting time delays between transmitted packets to im-
plement a form of Morse-like code. Intuitively, for a two
symbol code, this means that a short time delay between
two consecutive packets encodes a binary zero, and a
long time delay encodes a binary one. More generally,
suppose an outside intruder has been able to gain control
over a machineX inside our network and wishes to send
data to his/her computerA by codifying the information
as time delays between packets, [Figure 1].

Note thatA does not have to be the destination for
the network packets, but merely needs to be on the path
so that the packets may be intercepted and their inter-
packet delays measured. Intuitively, the fewer hops be-
tween machineX and machineA, the more accurate the
received signals (delays) will be.

For example we can imagine that the intruder is able
to execute instructionPingA from the compromised ma-
chineX within the perimeter of our network.

• Ping A

• Ping A, after∆t1 seconds

• Ping A, after∆t2 seconds

• Ping A, after∆t3 seconds

• · · ·

MachineA receives a sequence of PINGs with time
delays between consecutive packets of∆t̄1 seconds,∆t̄2
seconds,∆t̄3 seconds and so on. From an abstract point

2

Our LAN
X

AINTERNET�t1;�t2;�t3; ::: ��t1; ��t2; ��t3; :::

Figure 1: An intruder was able to control machine X
which is inside our local network and use it to exfiltrate
data coded in inter-packet delays. Machine A is the re-
ceiver.

of view this technique amounts to sending symbols of a
source through a noisy channel, and decoding the mes-
sage at the destination. We consider in fact that the de-
lays at the arrival computer are not exactly the same as
in the departure computer due to noise within the Inter-
net. Any forwarding device (routers, firewalls, switches,
repeaters) will incur a small processing delay. This delay
will vary in time, thus perturbing the inter-packet times
and making the channel noisy.

Assume that all the packets flowing through our net-
work are filtered by an agent (e.g., a firewall) that can
record packet inter-delays for each related communica-
tion (for example, PINGs to the same destination ad-
dress, or a stateful TCP session with a web server). From
this agent we obtain a list of delays. The question we
try to answer is: “Given a chain of consecutive delays
∆ti, is it possible to affirm with a certain probability
that there has been malicious intent from within our net-
work?”. In other words, “Are the observed delay times
specific/dicernable enough to (most likely)nothave been
generated by chance?”

In the nineties some work was done on techniques to
identify, react and quantify covert channel communica-
tion. These methods were mostly informal and specific
to a particular situation. The effect of noise upon a sim-
ple covert timing channel is investigated in [10]. Infor-
mation Theory is used to quantify the flow of informa-
tion across the channel. In [1] the Shannon capacity of
the single server queue is analyzed, and it is shown that
this capacity cannot be increased by feedback.

Since detecting covert communication is very diffi-
cult, most researchers resort to investigating methods
that minimize the amount of information that can be
transmitted using a covert timing channel. They devel-
oped different ways of reducing the possible leakage.
For instance, there have been studies focused on jammed
timing channels [5]. A jammer adds noise to a timing
channel by delaying packets. If the rate at which infor-
mation can be conveyed in the presence of a jamming de-
vice is acceptably low, there will be no need to monitor

the channel. Many protocols aim at reducing the band-
width of covert channels. TheQuantized Pump[14] is a
protocol that forces a lower bound on the covert channel
bandwidth. In [13] the authors show how trade-offs can
be made to reduce the threat of covert channels. They in-
troduce theSmall Message Criterion, which gives guide-
lines for what level of covert leaking is tolerable. Their
conclusion is that covert channels can never be totally
eliminated from high-assurance computing systems.

In [11] the authors analyze timing channels that are
discrete, memoryless and noiseless, calledSimple Tim-
ing Channels. They discuss different ways of defining
channel capacity and give its bounds when closed forms
solutions are intractable or unnecessary. An initial in-
quiry into the relationship between covert channel capac-
ity and anonymity was developed in [12]. The authors
are concerned with how much information a sender to an
anonymizer can leak to an eavesdropping outsider. In [3]
the authors propose two detection methods that exploit
the regularity of a timing channel compared to normal
traffic. All detection is done through statistical methods.
If the attacker adds noise to modify the statistics, how-
ever, this methodology becomes less effective.

In our investigation, we do not consider unskillful ad-
versaries. Instead we suppose that the attacker is highly
skilled and has the ability to conduct a thorough study of
the network so that either the largest amount of informa-
tion can be transmitted or stealth can be maximized. This
assumption creates a “worst-case” scenario; any channel
with a lower than optimal bandwidth or stealth will be
easier to detect and disrupt.

Since the general problem is very broad we start with
the restrictive assumption that the intruder does not add
any artificial noise to prevent an observer from detecting
his/her activity. Artificial noise can be added by wildly
varying the inter-delays at a predetermined moment. For
example, the intruder might send a sequence of packets
with randomized inter-delays after successful transmis-
sion of every 100 bits. The intruder knows to discard
these random inter-delays as malicious noise, but, our al-
gorithms do not. Therefore the algorithms might fail to
detect the malicious activity represented by the 100-bit
block.

3 Input Symbol Analysis

The decision to use a given number of symbols (or de-
lays) is not always a matter of maximizing transmission
bandwidth. Consider, for instance, that bandwidth is
maximized when we use two different symbols (i.e, two
different delays) to transmit a given data file. Since it of-
ten is hard to control existing sessions (it usually requires
root privileges), the attacker may be better off sending

3

HTTP requests to a webserver that he/she controls (al-
ternatively, ping could be used). By measuring the times
between the requests, the attacker will be able to decode
the transmission.

Although the transmission rate is maximized, this
case, is also, by far, the noisiest. For every bit trans-
mitted, an HTTP request is made, something that may
stand out when the traffic on the network is analyzed.
Conversely, suppose that the attacker prefers stealth over
transmission speed. Conceivably a 64 symbol encoding
can be chosen, meaning that each HTTP request then
carries 6 bits of information. Overall, it is illogical to
assume the attacker will pick a given encoding based on
the maximization of transmission speed. Especially if we
consider that the attacker has chosen acovertchannel to
communicate, it is likely that he/she will try to maximize
stealth over transmission bandwidth.

For the above reasons, the communication to modulate
preferably would be a continuous datastream, for exam-
ple, the acknowledgements of a real-time audio stream.
An interactive session, such as SSH, will not have a pre-
dictable enough release of packets (i.e., only when the
user types a command) to allow for transmission of large
files. Add to that the fact that the attacker will rarely
know beforehand what communications will predictably
exist and it is easiest to simply create the traffic, instead
of using existing connections, (although at an increased
risk.)

In general, an attacker will most likely not have the
luxury of choosing the most efficient or stealthiest en-
coding possible, for it assumes that the attacker can have
some form of information exchange with the compro-
mised system. If no such bilateral communication chan-
nel exists beforehand, the attacker will never be able to
instruct the attacking agent on what encoding is best re-
ceived (and therefore preferable). For that reason we may
safely assume that an attacker will pick an encoding that
will yield a decentbandwidth on average, while being
sufficientlystealthy.

Let us now analyze the general case of a channel with
multiple input symbols followed by the extreme case of
a binary channel. For both cases we propose methods
for detecting a covert channel in interpacket delays mea-
sured at an arbitrary point in the network. Both tech-
niques are based on capturing related datastreams, mean-
ing either a TCP communication, a PING to the same
host address or network, or a series UDP packets with
the same destination host and port. The observation se-
quence that is extracted is the stream of delays between
outgoing packets. Thus each time a packet leaves the lo-
cal network, the time since the last packet went out to
the same destination is reported. We call it∆t. Any re-
turning acknowledgements hold no value for an outgoing
covert channel.

Since a detector is unaware of the time encoding that
the attacker is using, an assumption must be made to at-
tempt differentiation between the∆t’s. In our system all
the delays are stored and an average is calculated every
time a new delay comes in. In the case of a binary en-
coding, this average delay (basically the sample mean) is
used as a cutoff to designate the delays as either zeros
(when they are smaller than the mean) or ones (when
they are larger than the mean). The estimated bit se-
quence is re-evaluated for each new delay that comes
in, and therefore can change as the mean is adjusted.
Generalization to the case of multiple symbols codes is
straightforward.

4 Multi-Symbol Channel

A skillful attacker would not choose a random distribu-
tion on the delays, however, but would try to pick a dis-
tribution that maximizes the Shannon channel capacity.
The Shannon capacity, as described in Appendix 8.1. We
definethe best coding systemas one that attains the Shan-
non limit. This is the base of the detection algorithm that
we propose. We want to guess, based on the network
characteristics, the coding system that the attacker would
use, and then analyze the emitted symbols to see if they
match such a distribution. If that is the case, we assume
that covert communication is taking place. A well known
technique used to find an input symbol distribution that
maximizes the channel capacity is the Arimoto-Blahut
algorithm [4].

We assume that an experienced enemy has gained con-
trol over one of our internal machines. He/she starts
by conducting an investigation of the network situation
around our machine with the intent of discovering the op-
timal parameters for a covert exfiltration channel. During
this first stage the channel will not be utilized in the most
efficient way possible. The enemy intends to find the in-
put sequence distribution that can exfiltrate the highest
amount of information per time-slice.

A (discrete memoryless) channel can be described by
a set of transition probabilities summarized in a transi-
tion matrix. Assume that the rows represent the symbols
of a discrete input alphabetX = x1, . . . , xN and the
columns represent the symbols of a discrete output al-
phabetY = y1, . . . , yN . The probability of receiving
yi under the condition thatxj was sent isp(yi|xj) and
this represents the value in cell[i, j] of the matrix. Note
that the number of rows does not have to be equal to the
number of columns.

The entries of the matrix can be determined experi-
mentally. Let us assume that some previous experiments
showed that the delays should be in the range of millisec-
onds. At the sender side a certain number of packets with

4

≤
1.5

1.5-
2.5

2.5-
3.5

3.5-
4.5

4.5-
5.5

5.5-
6.5

6.5-
7.5

7.5-
8.5

1 .05 .02 .91 .02 0 0 0 0

2 0 0 .12 .86 .01 0 .01 0

3 0 0 .01 .02 .96 .01 0 0

4 0 0 0 .01 .04 .94 .01 0

5 0 0 0 0 0 .05 .94 0.01

6 0 0 0 0 0 .08 .9 .02

7 0 0 0 0 0 0 0.07 .93

Table 1: Channel Matrix. The value [i,j] represents the
probability of receiving delay j when delay i was sent.

a certain delay are sent. At the receiver’s end the delays
are measured. This procedure is then repeated and differ-
ent delays are sent thought the channel, yielding Table 1.

This particular table was derived from experiments
that we ran at 1 pm during a work day in the month of
March 2005 over a distance of 24 hops. We sent 1000
specific delays and measured what was received. The
left-hand column gives the delays that were transmitted
(in 100ths of a second), and the subsequent columns give
the probabilities that a delay was received in a given time
bracket. For instance, the first row concerns packets sent
with a 10ms inter-packet delay. 5% of the packets were
received with a delay of 1.5 ms or less, 2% with a delay
of between 1.5 ms and 2.5 ms, and so on.

Once such a table is completed the Shannon capacity
of the represented discrete memoryless channel can be
estimated through the Arimoto-Blahut algorithm, (Ap-
pendix 8.2). We implemented this algorithm in Java and
ran it on the above channel to find its capacityC = 2.14
Bit/Symbol attained by the following distribution on the
input symbols:

1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms
.18 .171 .179 .175 .109 .104 .082

The ideal situation would be observing network traffic
with this exact distribution. In such a case we can assert
a covert channel is in place. Unfortunately there are at
least two difficulties with this approach. First, the opti-
mal input delay distribution may not be unique. Second,
the matrix is not constant over time (its entries depend on
network traffic) and so it has to be periodically updated.

We conducted experiments to characterize these time-
varying matrices. We found, for example, that these ma-
trices are banded (nonzero along a constant stripe of di-
agonals around the main diagonal). This is reasonable
since we expect that the majority of received delays are
close to the delay that was sent.

We believe that the banded structure can be exploited
to determine optimal input probability distributions,(i.e.,
attaining the Shannon Capacity) which can be matched
by a feasible channel coding scheme. These distribu-
tions are in fact the true candidates for the enemy. An
example by the noisy typewriter that is represented by a

(a)
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

P
ac

ke
t C

ou
nt

Seconds

SRC IP: 172.16.8.20

DST IP: 172.18.8.22

SRC PORT: 44343

DST PORT: 80

Covert Channel

(b)
 0

 500

 1000

 1500

 2000

 2500

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

P
ac

ke
t C

ou
nt

Seconds

SRC IP: 172.16.8.20
DST IP: 172.18.8.22
SRC PORT: 44352
DST PORT: 80

Not Covert Channel

Figure 2: The figures show the number of packets re-
ceived with a given delay. The horizontal axis shows the
inter-arrival time in seconds, and the vertical axis shows
the number of packets received. In case (a) the two spikes
show that a covert channel communication is in place.
Case (b) represents normal communication.

quasi-banded stochastic matrix and whose optimal input
distributions include both the uniform distribution and
the distribution that is zero onx2, x4, . . . , x2k and uni-
form on x1, x3, . . . , x2k−1. The second distribution in
this particular case automatically gives a 1-block chan-
nel code that has zero error probability in decoding.

In practice, we monitor outbound communications
with the goal of quantifying the distribution of input sym-
bols. Basically, this is done by generating a histogram
of the packet inter-arrival times. Individual communica-
tions are separated and tracked based on:

• Source IP address

• Destination IP address

• Source port

• Destination port

5

• Protocol

If no transmissions with the same characteristincs hap-
pen in an interval of time∆T the communication is con-
sidered closed. Any time an instance is closed a his-
togram of the delays is plotted. The current implementa-
tion has∆T = 5 minutes. Examples of such graphs are
in Figure 2. So ideally we would have:

1. A network monitor that gives us the actual inter-
packet delay distribution for each active communi-
cation.

2. The Arimoto - Blauth algorithm that calculates the
best input delays distribution, hopefully the one
used by the malicious intruder.

3. A Similarity Tester that compares the two proba-
bility distributions on input symbols, one obtained
monitoring the network traffic, and one obtained
maximizing the channel capacity.

Unfortunately there are many problems with this ap-
proach. To determine the optimal channel input distri-
bution with the Arimoto-Blahut algorithm, we must start
with the error matrix. Since the creation of such an error
matrix depends on knowledge of the input symbol distri-
bution, it is not obvious that such a matrix can be kept
dynamically in real-time. To exactly compute the errors
in reception, we must know where the attacker machine
is located, which is not the case. We can only calculate
the errors at our own border, which we may assume is
the closest an attacker may ever be.

Fortunately, the enemy faces the same problem. Since
the characteristics of a network change constantly (e.g.,
delays, congestion, etc.), the attacker will not be able
to choose an input distribution that maximizes the chan-
nel capacity for all cases. So we can assume that he/she
wants to use an input distribution that works well for dif-
ferent possible channels. For example it is intuitive that
at different times of the day the error matrix is different,
due to varying traffic levels.

It is also intuitive that machines close to each other
lead to a less noisy channel. The only advantage that the
attacker has with respect to us is that he knows exactly
how many hops are between the two machines. For this
reason we must assume the attacker is right at our border.

Our approach stores network information, over time,
for each active communication. Since the characteristics
of the network changes with time of day, congestion, and
other parameters, we are essentially dealing with a large
collection of channels. We assume that if the number of
hops between two machines is the same, they generate
the same channel matrix at the same time of day no mat-
ter their position in the network.

We could build many different channel matrices, each
one representing different times of day and different hop
counts. For example, we could monitor the traffic every
four hours, and each time analyze the cases of 2, 5, 10,
15, 20, 25, 30 hops. In a multidimensional space, this
produces7 · 6 = 42 possibilities.

The goal then is to find the best input symbol distri-
bution that combines the properties of these channels in
such a way that covert communication is possible un-
der all circumstances. In other words, if we have two
channels,C1 andC2, we are looking for a definition of
channel capacity that applies to both of the channels.

The most intuitive is the following. IfC1 has prob-
ability of occurrencep1 and channelC2 has probability
p2 (p2 = 1 − p1), a straightforward way to define the
capacity of the composition of the two channels would
be

C = max
p(x)

(
p1 · IC1(x; y) + p2 · IC2(x; y)

)

whereICi
(x; y) = HCi

(x) − HCi
(x|y) is the mutual

information for channelCi with i = 1, 2 and

H(x|y) =
∑

i

∑

j

p(xi, yj) log
1

p(xi|yj)

The input distribution to consider is the one that achieves
maximum capacity.

Although the above techniques are promising, they do,
however, depend on our assumptions that the attacker
tries to achieve the maximum capacity.

5 Binary Channel

In these experiments we focus on codes with only two
input symbols. Even in the binary case, before saying
anything useful about detecting covert channels, we must
investigate network properties. We concentrate on the
error rates and the channel capacity. For testing of our
algorithm we implemented a version of a covert chan-
nel with a self-calibrating delay loop in the sender. This
means that the sender automatically adjusts sleep times
for operating system overhead and load to ensure that the
sender’s timing is accurate. An arbitrary string of bytes
was sent and then verified at the receiver’s end. Error
rates were measured for zeros being received as ones,
and ones being received as zeros.

Experiments were run where the receiver was 4 hops,
and 24 hops away. The error rate for 4 hops was mostly
dependent on system load rather than network latency
differences. Therefore all 4-hop data was discarded.

Over the course of multiple days various predeter-
mined sequences were transmitted and the error rates
were recorded. The difference between∆t0 and∆t1 was

6

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

p0
p1
C

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

p0
p1
C

Figure 3: Error rates for zeros being received as ones
(p0), and ones being received as zeros (p1) and channel
capacity (C) for non-symmetric binary channel, where
∆t0 is constant and∆t1 increases. Horizontal axis
shows∆t1 − ∆t0 in seconds.(a) ∆t0 = 0.2s, 0.21 ≤
∆t1 ≤ 0.4s (b) ∆t0 = 0.4s,0.41 ≤ ∆t1 ≤ 0.6s

varied from 0.01 second to 0.2 seconds. The graphs in
Figure 3 show the error ratesp0 andp1 that were mea-
sured, wherep0 is the fraction of zeros that were received
as ones, andp1 is the fraction of ones that were received
as zeros. In the two graphs two different values of∆t0
are used.

There is no error-free communication over a noisy
channel when messages are encoded with zero redun-
dancy. The amount of redundancy that must be added to
achieve error-free communication depends on how noisy
the channel is, and can be measured with the Shannon
Channel Capacity. The channel capacity represents the
highest amount of information per symbol (Bit/Symbol)
that can be transmitted through the given noisy channel,

and for a Binary Symmetric Channel (BSC) is

C = 1−
[
Pe log

1
Pe

+ (1− Pe) log
1

1− Pe

]

wherePe is the error probability [4]. For example, if
we observe a train of time delays that forms a “random”
(incompressible) binary sequence, we would expect that
the number of zeros is about the same as the number of
ones. IfC < 1, however it would be impossible for the
intruder to convey any information (with a negligible er-
ror probability) transmitting at a rate of1 Bit/Symbol. In
other words, in the presence of noise, the intruder will
in general be forced to adopt some form of channel cod-
ification with a rate necessarily belowC. This redun-
dancy is well known in almost any form of digital com-
munication; popular schemes include parity bits, Cyclic
Redundancy Check (CRC) codes, and Error Correcting
Codes (ECC). When the channel capacity falls far below
1, however, the amount of redundancy that the intruder
is forced to use becomes impractical. Intuitively this is
also the solution to preventing this type of covert chan-
nel, namely by artificially varying packet delays at the
border (be it router or firewall) to forceC down so far
that successful transmission of data will go too slow, and
be too unreliable.

Intuitively our binary channel is not symmetric. Since
the inter-packet delays are different for zeros and ones,
their respective transmission rates are different as well.
This leads to the expectation that the error rates also must
be different, and this can be observed from Figure 3 (p0

andp1 are different). In other words, it takes less time
to transmit 100 zeros than it takes to transmit 100 ones.
This means that the rate at which zeros are transmitted is
higher than the rate at which ones are transmitted. (The
fact that zeros and ones are intermixed in our commu-
nication does not matter; the results would have been
the same if all the zeros were transmitted first, and then
all the ones.) Assuming that the channel does not care
whether zeros or ones are transmitted, the error rate is
expected to go up as the transition rate goes up. The er-
ror rate is higher for those symbols that are associated
with shorter delays since those delays are more sensitive
to being received erroneously. This explains why the er-
ror ratep0 (zeros being incorrectly received as ones) is
much higher than the error ratep1 (ones being received
as zeros). As the difference∆t1 −∆t0 increases the er-
ror curves both go down, since it becomes easier to dis-
tinguish between zeros and ones. Given error ratesp0

andp1 the channel capacity for a non-symmetric binary
channel becomes:

C = log
(

1 + 2
H(p0)−H(p1)

p1+p0−1

)
+

(1− p0)H(p1)− p1H(p0)
p1 + p0 − 1

7

where

H(x) = −x log x− (1− x) log(1− x)

The blue lines (with∗) in the graphs in Figure 3 show

the channel capacity for a non-symmetric binary channel,
based on the measured error probabilities.

Finally we must make some observations about the
experiments. First, the time of day and network load
can seriously affect the accuracy of the transmission.
A congested network forces the sender to adopt larger
differences between∆t0 and∆t1, thus bringing down
transmission speed. Second, the path that the packets
traverse is of direct impact on the differences in inter-
packet latencies. Not all 24 hops anywhere on the In-
ternet will give the same graph. Larger backbones tend
to have faster switching hardware, keeping differences in
latencies to a minimum. We found that crossing oceans
has the most profound impact on covert channel trans-
mission speeds, often lowering them by a factor of 10.
Likewise, rate limiting and quality-of-service queueing
may at times completely distort the channel, while at
other times allowing flawless transmission. This said, it
must be realized that graphs 3(a) and 3(b) teach us more
about the expected shape and best-case scenario, than
they tell us about what can be expected in general. The
observed differences between∆t0 and∆t1 (horizontal
axis) would certainly incur much higher error rates using
same Internet paths.

5.1 Statistical Detection

In the case of a binary input distribution, we developed
an approach based on statistical analysis. It can be ex-
tended to a higher even number of symbols. In such case,
the detection becomes harder.

This method is based on the assumption that (for a bi-
nary channel) the inter-packet delays will center around
two distinct values, ie. two distinct delays (Figure 2a)
while in a normal communication, where the delays are
more or less random the∆t’s are spread around a single
spike, (Figure 2b). We take advantage of this charac-
teristic to make some statistical comparisons between a
covert communication channel and normal network traf-
fic.

Looking at Figure 2 the difference between a binary
covert channel and regular traffic becomes evident; two
spikes versus one large spike. For the covert channel
the sample meanµ (average) of the inter-packet delays
will be somewhere between the two spikes. The packet-
count in the histogram at that point will therefore be very
low. Looking at a normal traffic pattern, however, the
mean of the inter-packet delays will be in the center of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
(m

ea
n)

/C
(m

ax
)

Bits

Covert Channel
Normal Traffic

Random Packet Delays

Figure 4: The ratio between the mean packet count and
the maximum packet count for normal traffic, fully ran-
dom delays, and a binary covert channel. The horizontal
axis shows the length of the estimated sequence in bits,
and the vertical axis showsCµ

Cmax
.

the large spike. The packet-count at the mean will thus
be very high, if not the highest. If we divide the packet-
count at the mean by the maximum packet-count from
the histogram, we get a measure of how likely it is that
the communication is a covert channel. In particular the
smaller the ratio Cµ

Cmax
, the higher the probability of hav-

ing a covert channel communication. We can therefore
define a probability:

PCovChan = 1− Cµ

Cmax

whereCµ is the packet-count at the mean andCmax is
the maximum packet-count of the histogram. Experi-
ments with three different types of data were conducted,
and Figure 4 shows the ratioCµ

Cmax
for these experiments.

1. Normal Data. Packets with an average delay of 0.2
seconds were transmitted. The inter-arrival times
vary, but the spike is at 0.2 seconds. The sample
meanµ is therefore represented by a delay very
close to 0.2 and the number of packets with exactly
that delay,Cµ is very high. The ratio between this
number and the histogram maximumCmax quickly
grows to 1.0, and stays there as more packets are
transmitted. Normal traffic is very bursty and inter-
packet delays are often dependent on how quickly
acknowledgements or responses are returned, which
is once again dependent on the distance (and sys-
tem load) of the two systems communicating. The
packet delays therefore center mostly around a sin-
gle value (0.2 seconds in this case) with occasional
outliers (usually on the order or 120 seconds or
more).

8

2. Random Data. Packets are sent with a fully ran-
dom delay. Although this is not realistic for traffic
encountered on the network, it does present a good
idea of the worst case scenario. Initially, when only
a few bits have been sent, the delays scatter across
the range, and it is unlikely that the sample mean
will have a high count. That explains why until ap-
proximately the first 10 bytes have arrived, the ratio

Cµ

Cmax
remains zero. Later on, as more packets ar-

rive, the histogram starts to even out, and the ratio
starts to crawl up. As the number of transmitted
packets goes up even further, the ratio keeps grow-
ing until it eventually hits 1.0 as the packet count
goes to infinity.

3. Covert Channel Communication. Two delays are
used, thus the inter-arrival times concentrate around
those two values. The sample meanµ lies approx-
imately in the middle between the two spikes. The
countCµ is low and therefore the ratioCµ

Cmax
is ap-

proximately zero. As more and more bits are trans-
mitted over the covert channel the spikes increase in
size, but the ratio always remains very close to zero.

Our algorithm detects the sequence that most likely
represents the covert communication channel by analyz-
ing the value Cµ

Cmax
. The lower that value the higher is the

probability of having a malicious communication hidden
in inter-packet delays.

Intuitively the relative height ofCµ is directly related
to the channel capacity. Consider that, for an approxi-
mately equal distribution of input symbols,Cµ forms the
cut-off point between zeros and ones; if a received∆t is
smaller than the mean a zero is received, otherwise a one
is received . Therefore, the more packets that are counted
exactly around the mean, the “higher” the confusion. In
other words; peak for zeros and the peak for ones over-
lap. The higherCµ, the larger the overlap. Confusion,
or overlap, means that zeros are incorrectly received as
ones, and vice versa. A bigger overlap means higher er-
ror rates and a reduced channel capacity. So as the ratio

Cµ

Cmax
grows, the channel capacity drops.

Furthermore, we know that when the peaks are per-
fectly separated the error will be zero, and therefore the
channel capacity will be one. Also1 − Cµ

Cmax
will be

one. Conversely, when the peaks are exactly overlapping
1− Cµ

Cmax
will be zero, and there will be no distinction be-

tween zeros and ones, meaning that the channel capacity
will be zero also. The intuitive expectation that1− Cµ

Cmax

and the channel capacity are closely related is confirmed
by the results shown in Figures 5.

Let us conclude this paragraph with a note on TCP
communications. TCP is a stateful protocol that sends
keep-alive packets every 4 minutes in case there is no

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

p0
p1
C

C_u/C_max

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

p0
p1
C

1-C_u/C_max

Figure 5: Error rates for zeros being received as ones
(p0); and ones being received as zeros (p1) and channel
capacity (C) for non-symmetric binary channel, where
∆t0 is constant and∆t1 increases. Horizontal axis
shows∆t1 − ∆t0 in seconds.(a) ∆t0 = 0.2s, 0.21 ≤
∆t1 ≤ 0.4s (b) ∆t0 = 0.4s,0.41 ≤ ∆t1 ≤ 0.6s

other traffic flowing over the connection. The histogram
graphs for TCP connections often reveal bursts (big
spikes) around 0.1 or 0.2 seconds, and a small spike
around the 4 minutes. Depending on its duration, there-
fore, a session might inadvertently be classified as a
covert channel (the mean lies between the 0.1 and 240
seconds, and there are two peaks). The implementa-
tion of our algorithm takes into account that even if this
were a covert channel, the delay for one of the symbols
would be too long to yield serious bandwidth. Since this
case occurs quite frequently, a suspected covert channel
where one of the symbols is over 3 minutes in duration
is discarded.

9

6 Conclusion and Future Work

In this paper, we have introduced two methods for detect-
ing timing covert channels. The first one, based on Infor-
mation Theory concepts, requires a thorough understand-
ing of the network situation and a highly skilled attacker.
The second technique, instead, is based on the simple
idea that if an even number of input symbols is used, the
number of packets at the mean delay is very low com-
pared to the maximum number of packets for any given
delay. The statistical analysis of the inter-packet delays
does a good job of classifying between regular network
traffic and traffic that is communicating through modula-
tion of the inter-packet delays. The algorithm works in
a case of code with an even number of delays (symbols)
and performs best when the code is binary. Finally, our
algorithms seem to perform very well in an experimental
test-bed, but have not been tested in heavily utilized net-
works. The false positive, and false negative rates should
be investigated empirically.

Although we investigated a timing channel that uses
packet inter-arrival times to encode covert messages,
there are other ways of transmitting data undetected. For
instance, consider the possibility that the attacker uses
two external machines. If he/she receives a packet in
machine A a binary 0 is read, and if he/she receives a
packet in machine B a binary 1 is read. Systems A and
B must communicate to correctly re-order the bitstream.
Techniques for detecting and disrupting such a channel
are likely to be very different from the techniques we
described here. Future work will focus on more gen-
eralized detection schemes and broadening our scope to
other types of covert channels.

7 Acknowledgments

Supported under ARDA P2INGS Award No. F30602-
03-C-0248. Points of view in this document are those of
the authors and do not necessarily represent the official
position of ARDA.

References

[1] V. Anantharam and S. Verdú. Bits through Queues.IEEE Trans.
on Information Theory, 42(1):4–18, Jan 1996.

[2] R. E. Blahut. Computation of Channel Capacity and Rate-
Distortion Functions. IEEE Trans. on Information Theory, IT-
18(4):460–473, Jul 1972.

[3] S. Cabuk, C. Brodley, and C. Shields. IP Covert Timing Chan-
nels: Design and Detection.Proc. of the 11th ACM conference
on Computer and Communications Security, 2004.

[4] T. M. Cover and J. A. Thomas.Elements of Information Theory.
Wiley Series in Telecommunications. John Wiley & Sons, New
York, NY, USA, 1991.

[5] J. Giles and B. Hajek. An Information-Theoretic and Game-
theoretic Study of Timing Channels.IEEE Trans. on Information
Theory, 48(9):2455–2477, Sept 2002.

[6] D. K. Kamran Ahsan. Practical Data Hiding in TCP/IP.Proc.
Workshop on Multimedia Security at ACM Multimedia, 2002.

[7] R. A. Kemmerer. Shared Resource Matrix Methodology: An Ap-
proach to Identifying Storage and Timing Channel.ACM Trans-
action on Computer Systems, 1(3):256–277, Aug 1983.

[8] R. A. Kemmerer. Shared Resource Matrix Methodology: An Ap-
proach to Identifying Storage and Timing Channel : Twenty years
later.Proc. 18th Annual Computer Security Applications Confer-
ence (ACSAC), pages 109–118, 2002.

[9] B. W. Lampson. A Note on the Confinment Problem.Proc. of
the Communication of the ACM, 16(10):613–615, Oct 1973.

[10] I. S. Morskowitz and A. R. Miller. The Channel Capacity of a
Certain Noisy Timing Channel.Proc. IEEE Transaction on In-
formation Theory, 38(4):1339–1344, 1992.

[11] I. S. Morskowitz and A. R. Miller. Simple timing channels.Proc.
IEEE Computer Society Symposium on Research in Security and
Privacy, pages 56–64, 1994.

[12] I. Moskowitz, R. Newman, D. Crepeau, and A. Miller. Covert
channels and anonymizing networks.Proceedings of the Work-
shop on Privacy in the Electronic Society (WPES 03), Washing-
ton, DC, USA., October 2003.

[13] I. S. Moskowitz and M. H. Kang. Covert Channels Here to Stay?
Proc. of COMPASS, pages 235–243, 1994.

[14] N. Ogurtsov, H. Orman, R. Schroeppel, S. O’Malley, and
O. Spatscheck. Covert Channel Elimination Protocols.Technical
Reports TR96-14. Department of Computer Science, University
of Arizona, 1996.

8 Appendix

8.1 Shannon Capacity

The channel capacity of a Discrete Memoryless Channel
is defined as

C = max
PX

I(X;Y) = max
PX

H(X)−H(X|Y)

wherePX is a probability distribution on the input sym-

bols andI(X; Y) is the mutual information betweenX
andY which is a measure of the dependance between the
two random variables.

8.2 The Arimoto-Blahut Algorithm

Let us see how the Arimoto-Blahut algorithm works. We
rewrite the definition of channel capacity in the following
way [4]:

C = max
r(x)

I(X; Y)

C = max
r(x)

∑
x

∑
y

r(x)p(y|x) log
r(x)p(y|x)

r(x)
∑

w r(w)p(y|w)

10

that written as a double maximization becomes:

C = max
q(x|y)

max
r(x)

∑
x

∑
y

r(x)p(y|x) log
q(x|y)
r(x)

.

whereq(x|y) = r(x)p(y|x)∑
w

r(w)p(y|w)
The optimal input distri-

bution which is then used as the basis for the next itera-
tion is

r(x) =

∏
y q(x|y)p(y|x)

∑
w

∏
y q(w|y)p(y|x)

.

Let us indicate withR is the number of emitted sym-

bols (number of rows of the error matrix) andT is the
number of received symbols (number of columns of the
error matrix). We want to findr(x) = r(x1), . . . , r(xR)
that maximizes the capacity. Let’s fixε. The Arimoto-
Blahut algorithm can be summarized in the following
three steps.

1. Initialization. The initial distribution can be any
distribution on the input symbols. We can choose
for example:

r(0)(0) = 1, r(0)(1) = 0, . . . , r(0)(R) = 0.

2. Recursion.For j = 0, . . . , T − 1 compute

D(yj) =
(R−1)∑

i=0

r(k−1)(xi)p(yj |xi)

Then fori = 0, . . . , R− 1 and forj = 0, . . . , T − 1
compute:

q(xi|yj) =
r(k−1)(xi)p(yj |xi)

D(yj)

Finally for i = 0, . . . , R− 1 compute:

r(k)(xi) =

∏(T−1)
j=1 q(xi|yj)p(yj |xi)

∑(R−1)
i=1

∏(T−1)
i=1 q(xi|yj)p(yj |xi)

3. Termination. A reasonable point where to stop the
procedure is when two sequential iterations of the
algorithm give a very similar result.We repeat the

recursion until:

1
2

(R−1)∑

i=0

|r(k−1)(xi)− r(k)(xi)| ≤ ε.

It is shown [2] that the algorithm converges. But the so-
lution is not unique.

11

